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PROFESSOR: Today, we're going to be solving a problem from a final exam. And here it is. It's about a

matrix A, [1, 0, 1; 0, 1, 1; 1, 1, 0]. And we know that this matrix has two eigenvalues, 1 and 2.

And we also know that if we do elimination, the first two pivots will be 1 and 1.

And here are two questions about this matrix. The first one is find lambda_3 and d_3, the third

eigenvalue and the third pivot. And the second one asks you, what is the smallest a_(3, 3)-- so

if you can change this entry, what is the smallest number that you can put there that will make

the matrix A positive semidefinite?

And also, if instead of changing that entry, you do A plus c*I, what is the smallest number c

that will make that matrix, A plus c*I, positive semidefinite? There's also a third part to the

question, but we'll get to that later. Why don't you hit pause and work on these two parts? And

when you're ready, come back and I'll show you how I did it.

Hi. I hope you managed to do parts A and B. Let's work on it together. Part A. Well, we want to

know what the third eigenvalue is. And you know what the first two are. What else do you know

about eigenvalues and the matrix? You know that the sum of all the eigenvalues of the matrix

is equal to the trace of the matrix.

So lambda_1 plus lambda_2 plus lambda_3 is equal to the trace of the matrix. In this case,

you have 1 plus 2 plus lambda_3 equals to the trace. The trace is the sum of the diagonal

entries.

So, come over here. The trace is 1 plus 1 plus 0. The trace is equal to 2. So we have 3 plus

lambda_3 is equal to 2. So lambda_3 is equal to minus 1. On to the third pivot.

We don't really want to do elimination. That would take too long. So there must be some trick

that we can use. Well, we have the first two pivots, and we want to know the third. Remember,

when you do elimination steps, that does not change the determinant of the matrix. And you're

left with an upper triangular.

So the determinant of that matrix will be d_1 times d_2 times d_3. And it will still be equal to

the determinant of A. I guess there's a small caveat that I should point out. The pivots are not

always the diagonal entries. It might be that one of the diagonal entries will be 0. That

happens if the matrix is singular.



But here, all my three eigenvalues are non-zero. They are 1, 2, and -1. So that won't happen.

So this is actually possible to do. The product of the three pivots will be equal to the

determinant of A. And the determinant of A is the product of the eigenvalues, 1 times 2 times -

1. So it's equal to -2. 1 times 1 times d_33 is equal to -2.

Here is your third pivot, d_3. That finishes part A. Is that the result that you got? Let's do part

B. What is the smallest a_(3,3) entry that would make the matrix positive semidefinite?

Well, first of all, note that A is not positive semidefinite yet. The eigenvalues are 1, 2, and -1. -1

is negative, so the matrix is not positive definite and not even positive semidefinite. Positive

semidefinite means that all the eigenvalues will be either positive or 0. That is, non-negative.

So our matrix will be 1, 0, 1; 0, 1, 1; 1, 1, and we're allowed to change this third entry. How do

we figure out if this matrix is positive semidefinite or not? Well, I was talking about the

eigenvalues. But maybe the easiest way is to do the determinant test.

The determinant of the small one by one left uppermost matrix is 1. The determinant of the

two by two upper leftmost matrix is 1 times 1 minus 0 times 0, 1, also positive. So we need to

check that the determinant of the whole matrix will also be non-negative.

So what is the determinant of this matrix? It is equal to the three by three matrix. So do you

know how to do it quickly? There's this way that only works for three by three and not for

bigger. Which is, the determinant will be 1 times 1 times a_(3,3) plus 0 times 1 times 1. That's

0. Plus 1 times 0 times 1 That's 0 again. Minus 1 times 1 times 1 minus 1 times 1 times 1

minus a_(3,3) times 0 times 0. That's 0.

So this is the determinant. It's a_(3,3) minus 2. And I want it to be greater than or equal to 0.

This will guarantee that the matrix is positive semidefinite. So a_(3,3) must be bigger than or

equal to 2. The smallest value for a_(3,3) that will make the matrix positive semidefinite is 2.

There's another part to the question still, which is what is the smallest c that will make the

matrix A plus c*I positive semidefinite? How should we do this? The quickest way is to do the

eigenvalue test. A has eigenvalues 1, 2, and -1.

So A plus c*I has eigenvalues-- well, you're just adding c*I to the matrix. And in this particular

case, you should know by now that that keeps the eigenvectors the same and adds the

number c to each of the eigenvalues.



And I want each one of these to be non-negative. For that to be true, I have to have c greater

than or equal to 1. c greater than or equal to 1. So the smallest value that c can take that will

make the matrix A positive semidefinite is 1.

That solves parts A and B of this question. There is a part C to this question. Let me show it to

you. It's says: starting with one of these three vectors, [3, 0, 0], [0, 3, 0], or [0, 0, 3], and with

u_(k+1) equals to a half of A times u_k, what is the limit behavior of u_k as k goes to infinity?

I've written the matrix one half of A here for your convenience. And now, you can hit pause

and work on it. And when you're ready, we'll get back and solve it together. I hope you

managed to solve this one. Now let's do it together.

Well, if you've noticed, the matrix one half of A is a Markov matrix. So there are all these

results about Markov matrices and steady states and so on. Usually, Markov matrices have a

unique steady state, but that is only true when there are no non-zero entries. But here, there

are. So we can't guarantee that there's a unique steady state.

What we can do is look at the eigenvalues and see if this is still true nonetheless. What are the

eigenvalues of A-- of one half of A? Well, if you remember from part A, the eigenvalues of A

were 1, 2, and -1.

So the eigenvalues of one half of A-- taking a multiple does not change the eigenvector, but it

changes the eigenvalue by the same multiple. It would be 1/2, 2 divided by 2 is 1, and minus

1/2.

So here are the eigenvalues of A. And there's only one eigenvalue that has absolute value

equal to 1. So you actually still get a unique steady state vector. So everything is fine. We can

proceed as usual. And the usual procedure is you find the eigenvector corresponding to that

eigenvalue, 1. And that will be the limit behavior as k goes to infinity of u_k.

So what is the eigenvector corresponding to 1? Eigenvector. Well, you already know how to do

this, so I will just write the solution. It is [1, 1, 1]. That means that u_k, as k goes to infinity, will

converge to some appropriate multiple of this eigenvector [1, 1, 1].

How do you know which multiple to use? Well, as usual in Markov matrices, when you do an

iteration of the process, when you do u_(k+1) is equal to one half of A times u_k, that does not

change the sum of the entries of the vector u_k. So whatever the sum was here, it will still be



the same here.

If you go all the way back and you start with u_0, whatever the sum of the entries was here,

that's what it will be all the way through u_1, u_2, u_3, and so on, all the way to the steady

state, u_infinity. So whatever the multiple of [1, 1, 1], it has to have the sum of these entries

add up to 3.

Well, that's already there. We already happened to pick the correct eigenvector, so that's very

convenient. The correct multiple is simply the vector [1, 1, 1]. So the limit behavior of u_k as k

goes to infinity is u_infinity equal to [1, 1, 1]. We're done. Thank you.


