
Bayesian Updating: Continuous Priors 
18.05 Spring 2014 

Compute∫ b

a

f(x|θ)f(θ) dθ

January 1, 2017       1 /26



Beta distribution
 
Beta(a, b) has density
 

(a + b − 1)!
f (θ) = θa−1(1 − θ)b−1 

(a − 1)!(b − 1)! 

http://mathlets.org/mathlets/beta-distribution/ 

Observation: 
The coefficient is a normalizing factor, so if we have a pdf 

f (θ) = cθa−1(1 − θ)b−1 

then 
θ ∼ beta(a, b) 

and 
(a + b − 1)! 

c = 
(a − 1)!(b − 1)! 
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Board question preamble: beta priors 
Suppose you are testing a new medical treatment with unknown 
probability of success θ. You don’t know that θ, but your prior belief 
is that it’s probably not too far from 0.5. You capture this intuition 
with a beta(5,5) prior on θ. 
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Beta(5,5) for θ

To sharpen this distribution you take data and update the prior. 

Question on next slide. 
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Board question: beta priors 

(a + b − 1)!
Beta(a, b): f (θ) = θa−1(1 − θ)b−1 

(a − 1)!(b − 1)! 
Treatment has prior f (θ) ∼ beta(5, 5) 

1. Suppose you test it on 10 patients and have 6 successes. Find the 
posterior distribution on θ. Identify the type of the posterior 
distribution. 

2. Suppose you recorded the order of the results and got 
S S S F F S S S F F. Find the posterior based on this data. 

3. Using your answer to (2) give an integral for the posterior 
predictive probability of success with the next patient. 

4. Use what you know about pdf’s to evaluate the integral without 
computing it directly 
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Solution
 
9!1. Prior pdf is f (θ) = θ4(1 − θ)4 = c1θ4(1 − θ)4 .4! 4! 

hypoth. prior likelihood Bayes numer. posterior 
10θ c1θ

4(1 − θ)4 dθ 
C )

θ6(1 − θ)4 c3θ
10(1 − θ)8 dθ beta(11, 9)6 

We know the normalized posterior is a beta distribution because it has the 
form of a beta distribution (cθa−(1 − θ)b−1 on [0,1]) so by our earlier 
observation it must be a beta distribution. 

2. The answer is the same. The only change is that the likelihood has a 
coefficient of 1 instead of a binomial coefficent. 

3. The posterior on θ is beta(11, 9) which has density 

19! 
f (θ |, data) = θ10(1 − θ)8 . 

10! 8! 

Solution to (3) continued on next slide
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Solution continued 
The law of total probability says that the posterior predictive probability of 
success is 

1 1 

P(success | data) = f (success | θ) · f (θ | data) dθ 
0 1 1 19! 

1 1 19! 
= θ · θ10(1 − θ)8 dθ = θ11(1 − θ)8 dθ 

10! 8! 10! 8! 0 0 

4. We compute the integral in (3) by relating it to the pdf of beta(12, 9): 
20! θ11(1 − θ)7 . Since the pdf of beta(12, 9) integrates to 1 we have 11! 8! 

1 1 20! 
θ11(1 − θ)7 = 1 ⇒ 

1 1 

θ11(1 − θ)7 = 
11! 8! 

. 
0 11! 8! 0 20! 

Thus 1 1 19! 
θ11(1 − θ)8 dθ = 

19! · 11! 8! . = 
11 

. 
0 10! 8! 10! 8! 20! 20 

January 1, 2017       6 /26



Conjugate priors
 

We had 

Prior f (θ) dθ: beta distribution 

Likelihood p(x |θ): binomial distribution 

Posterior f (θ|x) dθ: beta distribution 

The beta distribution is called a conjugate prior for the binomial 
likelihood. 

That is, the beta prior becomes a beta posterior and repeated 
updating is easy! 
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Concept Question
 

Suppose your prior f (θ) in the bent coin example is Beta(6, 8). You 
flip the coin 7 times, getting 2 heads and 5 tails. What is the 
posterior pdf f (θ|x)? 

1. Beta(2,5) 

2. Beta(3,6) 

3. Beta(6,8) 

4. Beta(8,13) 

We saw in the previous board question that 2 heads and 5 tails will update 
a beta(a, b) prior to a beta(a + 2, b + 5) posterior. 

answer: (4) beta(8, 13). 
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Reminder: predictive probabilities 
Continuous hypotheses θ, discrete data x1, x2, . . . 
(Assume trials are independent given the hypothesis θ.) 

Prior predictive probability 
1 

p(x1) = p(x1 | θ)f (θ) dθ 

Posterior predictive probability 
1 

p(x2 | x1) = p(x2 | θ)f (θ | x1) dθ 

Analogous to discrete hypotheses: H1, H2, . . .. 

n n

p(x1) = 
1 

p(x1 |Hi )P(Hi ) p(x2 | x1) = 
1 

p(x2 |Hi )p(Hi | x1). 
i=1 i=1 

January 1, 2017       9 /26



Continuous priors, continuous data
 

Bayesian update tables:
 

hypoth. prior likelihood 
Bayes 

numerator 
posterior 
f (θ|x) dθ 

θ f (θ) dθ f (x | θ) f (x | θ)f (θ) dθ 
f (x | θ)f (θ) dθ 

f (x) 

total 1 f (x) 1 
1 

f (x) = f (x | θ)f (θ) dθ 
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Normal prior, normal data 
N(µ, σ2) has density 

1 −(y−µ)2/2σ2 
f (y) = √ e . 

σ 2π 

Observation: 
The coefficient is a normalizing factor, so if we have a pdf 

−(y −µ)2/2σ2 
f (y) = ce 

then 
y ∼ N(µ, σ2) 

and 
1 

c = √ 
σ 2π 
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Board question: normal prior, normal data
 

−(y−µ)2/2σ2 
N(µ, σ2) has pdf: f (y) = √ 

1 
e . 

σ 2π 
Suppose our data follows a N(θ, 4) distribution with unknown 
mean θ and variance 4. That is 

f (x | θ) = pdf of N(θ, 4) 

Suppose our prior on θ is N(3, 1). 

Suppose we obtain data x1 = 5. 

1. Use the data to find the posterior pdf for θ. 

Write out your tables clearly. Use (and understand) infinitesimals. 

You will have to remember how to complete the square to do the 
updating! 
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Solution
 
We have: 

−(θ−3)2/2Prior: θ ∼ N(3, 1): f (θ) = c1e
−(x−θ)2/8Likelihood x ∼ N(θ, 4): f (x | θ) = c2e

−(5−θ)2/8For x = 5 the likelihood is c2e

hypoth. prior likelihood Bayes numer. 
θ c1e

−(θ−3)2/2 dθ c2e
−(5−θ)2/8 dx c3e

−(θ−3)2/2e−(5−θ)2 /8 dθ dx 

A bit of algebraic manipulation of the Bayes numerator gives 

[θ2− 34−(θ−3)2/2 − 5 θ+61] − 5 [(θ−17/5)2+61−(17/5)2]c3e e −(5−θ)2/8 dθ dx = c3e 8 5 = c3e 8 

− 5 (61−(17/5)2) − 5 (θ−17/5)2 
= c3e 8 e 8 

(θ−17/5)2 

− 5 (θ−17/5)2 − 
2· 4 

= c4e 8 = c4e 5 

)
. 4The last expression shows the posterior is N 

C
17 
5 , 5 
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Solution graphs
 

prior = blue; posterior = purple; data = red 

Data: x1 = 5 
Prior is normal: µprior = 3; σprior = 1 
Likelihood is normal: µ = θ; σ = 2 
Posterior is normal µposterior = 3.4; σposterior = 0.894 

• Will see simple formulas for doing this update next time. 
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Board question: Romeo and Juliet 

Romeo is always late. How late follows a uniform distribution 
uniform(0, θ) with unknown parameter θ in hours. 

Juliet knows that θ ≤ 1 hour and she assumes a flat prior for θ on 
[0, 1]. 

On their first date Romeo is 15 minutes late. Use this data to update 
the prior distribution for θ. 

(a) Find and graph the prior and posterior pdfs for θ. 

(b) Find the prior predictive pdf for how late Romeo will be on the 
first date and the posterior predictive pdf of how late he’ll be on the 
second date (if he gets one!). Graph these pdfs. 

See next slides for solution 
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Solution
 

Parameter of interest: θ = upper bound on R’s lateness.
 
Data: x1 = 0.25.
 
Goals: (a) Posterior pdf for θ
 
(b) Predictive pdf’s –requires pdf’s for θ 
In the update table we split the hypotheses into the two different cases 
θ < 0.25 and θ ≥ 0.25 : 

prior likelihood Bayes posterior 
hyp. f (θ) f (x1|θ) numerator f (θ|x1) 

θ < 0.25 
θ ≥ 0.25 

dθ 
dθ 

0 
1 
θ 

0 
dθ 
θ 

0 
c 
θ dθ 

Tot. 1 T 1 
The normalizing constant c must make the total posterior probability 1, so 

1 1 dθ 1 
c = 1 ⇒ c = . 

θ ln(4)0.25 

Continued on next slide.
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Solution graphs
 

Prior and posterior pdf’s for θ. 
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Solution graphs continued
 

(b) Prior prediction: The likelihood function falls into cases: 
�

1 
θ if θ ≥ x1

f (x1|θ) = 
0 if θ < x1 

Therefore the prior predictive pdf of x1 is 

1 1 1 1 
f (x1) = f (x1|θ)f (θ) dθ = dθ = − ln(x1). 

θx1 

continued on next slide 
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�

Solution continued
 

Posterior prediction:
 
The likelihood function is the same as before:
 

1 if θ ≥ x2θf (x2|θ) = 
0 if θ < x2. 

1 
The posterior predictive pdf f (x2|x1) = f (x2|θ)f (θ|x1) dθ. The 

integrand is 0 unless θ > x2 and θ > 0.25. There are two cases: 

1 1 c 
If x2 < 0.25 : f (x2|x1) = dθ = 3c = 3/ ln(4). 

0.25 θ
2 

1 1 c 1 
If x2 ≥ 0.25 : f (x2|x1) = dθ = ( − 1)/ ln(4)

θ2 x2x2 

Plots of the predictive pdf’s are on the next slide.
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Solution continued
 

Prior (red) and posterior (blue) predictive pdf’s for x2 
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From discrete to continuous Bayesian updating
 

Bent coin with unknown probability of heads θ.
 

Data x1: heads on one toss.
 

Start with a flat prior and update:
 

hyp. prior likelihood 
Bayes 

numerator numerator 
θ dθ θ θ dθ 2θ dθ 

Total 1 
J 1 
0 θ dθ = 1/2 1 

Posterior pdf: f (θ | x1) = 2θ. 
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Approximate continuous by discrete
 

approximate the continuous range of hypotheses by a finite 
number of hypotheses. 

create the discrete updating table for the finite number of 
hypotheses. 

consider how the table changes as the number of hypotheses 
goes to infinity. 
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Chop [0, 1] into 4 intervals
 

hypothesis prior likelihood Bayes num. posterior

Total 1 –

n∑

i=1

θi ∆θ 1

1/4

θ = 1/8 1/8 (1/4) × (1/8) 1/16

1/4

θ = 3/8 3/8 (1/4) × (3/8) 3/161/4

θ = 5/8 5/8 (1/4) × (5/8) 5/16

1/4

θ = 7/8 7/8 (1/4) × (7/8) 7/16
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Chop [0, 1] into 12 intervals
 

hypothesis prior likelihood Bayes num. posterior

Total 1 –

n∑

i=1

θi ∆θ 1

1/12

θ = 1/24 1/24 (1/12)× (1/24) 1/144

1/12

θ = 3/24 3/24 (1/12)× (3/24) 3/144

1/12

θ = 5/24 5/24 (1/12)× (5/24) 5/144

1/12

θ = 7/24 7/24 (1/12)× (7/24) 7/144

1/12

θ = 9/24 9/24 (1/12)× (9/24) 9/144

1/12

θ = 11/24 11/24 (1/12)× (11/24) 11/1441/12

θ = 13/24 13/24 (1/12)× (13/24) 13/144

1/12

θ = 15/24 15/24 (1/12)× (15/24) 15/144

1/12

θ = 17/24 17/24 (1/12)× (17/24) 17/144

1/12

θ = 19/24 19/24 (1/12)× (19/24) 19/144

1/12

θ = 21/24 21/24 (1/12)× (21/24) 21/144

1/12

θ = 23/24 23/24 (1/12)× (23/24) 23/144
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Density historgram
 

Density historgram for posterior pmf with 4 and 20 slices.
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The original posterior pdf is shown in red.
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