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– Resequencing


What could we learn?




SNPs, patterns of variation, and complex traits


• Introduction 
• Common genetic variation and disease 
• Methods for finding variants for complex traits

• Interpreting genetic studies 

– Association 
– Linkage 
– Resequencing 

• What could we learn? 



Many common diseases have genetic components...


Diseases 

Bipolar disorder 
Stroke 

Heart attack 
Breast cancer 

Diabetes 

Inflammatory bowel disease 

Prostate cancer 

Arthritis




…as do many quantitative traits...


Quantitative Traits


Height 

Blood pressure


Insulin secretion


Weight 

Waist-hip ratio 

Timing of Puberty 

Bone density 



…but the genetic architecture is usually complex


Gene N


Nutrition 
Environment 

Environment in utero 
Etc. 

Gene 1


Gene 2

Genes 

Gene 3

. .

 .




Goal: Connect genotypic variation with phenotypic variation 


Inherited DNA sequence variation Variation in phenotypes

?



Associating inherited (DNA) variation 

with biological variation


•	 Each person’s genome is 
slightly different 

• Some differences alter 

biological function


•	 Which differences matter? 




How do we know genetics plays a role?


Twin studies


•	 Identical (monozygotic) 
twins are more similar than 
fraternal twins (dizygotic) 

•	 Example: type 2 diabetes 
–	 MZ twins: >80% concordant 
–	 DZ twins: 30-50% concordant 



How do we know genetics plays a role?


Family studies


•	 Risk to siblings and other 
relatives is greater than in 
the general population 

•	 Example: type 2 diabetes

– Risk to siblings: 30%


– Population risk: 5-10%




SNPs, patterns of variation, and complex traits


• Introduction 
• Common genetic variation and disease 
• Methods for finding variants for complex traits


• Interpreting genetic studies 
– Association 
– Linkage 
– Resequencing 

• Approaches for the present and future 
– Haplotypes and linkage disequilibrium 

• What could we learn? 



ATGCCGATCGTACGACACATATCGTCATCGTACTGACTGTCTAGTCTAAACACATCCATCGTACTGACTGCATCGATCCATTTTA 
TACTGACTGCATCGTACTGACTGCACATATCGTCATCGTACTGACTGTCTAGTCTAAACACATCCCACATATCGTTTACCCCATG 
CATCGTACTGACTGTCTAGTCTAAACACATCCCACATATCGTCATCGTACTGACTGTCTAGTCTAAACACATCCCAGCATCCATC 
CATATCGTCATCGTACTGACTGTCTAGTCTAAACACATCCTATGCCGATCGTACGACACATATCGTCATCGTACTGCCCTACGGG 
ACTGTCTAGTCTAAACACATCCATCGTACTGACTGCATCGTACTGACTGCATCGTACTGACTGCACATATCGTCATACATAGACT 
TCGTACTGACTGTCTAGTCTAAACACATCCCACATATCGTCATCGTACTGACTGTCTAGTCTAAACACATCCCACTTTACCCATG 
ATATCGTCATCGTACTGACTGTCTAGTCTAAACACATCCCACATATCGTCATCGTACTGACTGTCTAGTCTAAACACATCCTATA 
GCCGATCGTACGACACATATCGTCATCGTACTGCCCTACGGGACTGTCTAGTCTAAACACATCCATCGTACTGACTGCATCGTAC 
TGACTGCATCGTACTGACTGCACATATCGTCATACATAGACTTCGTACTGACTGTCTAGTCTAAACACATCCCACATATCGTCAT 
CGTACTGACTGTCTAGTCTAAACACATCCCACTTTACCCATGCATCGTACTGACTGTCTAGTCTAAACACATCCCACATATCGTC 
ATCGTACTGACTGTCTAGTCTAAACACATCCCAGCATCCATCCATATCGTCATCGTACTGACTGTCTAGTCTAAACACATCCTAT 
GCCGATCGTACGACACATATCGTCATCGTACTGCCCTACGGGACTGTCTAGTCTAAACACATCCATCGTACTGACTGCATCGTAC 
TGACTGCATCGTACTGACTGCACATATCGTCATACATAGACTTCGTACTGACTGTCTAGTCTAAACACATCCCACATATCGTCAT 
CGTACTGACTGTCTAGTCTAAACACATCCCACTTTACCCATGATATCGTCATCGTACTGACTGTCTAGTCTAAACACATCCCACA 
TATCGTCATCGTACTGACTGTCTAGTCTAAACACATCCTATACATATCGTCATCGTACTGACTGTCTAGTCTAAACACATCCTAT 
GCCGATCGTACGACACATATCGTCATCGTACTGCCCTACGGGACTGTCTAGTCTAAACACATCCATCGTACTGACTGCATCGTAC 
TGACTGCATCGTACTGACTGCACATATCGTCATACATAGACTTCGTACTGACTGTCTAGTCTAAACACATCCCACATATCGTCAT 
CGTACTGACTGTCTAGTCTAAACACATCCCACTTTACCCATGATATCGTCATCGTACTGACTGTCTAGTCTAAACACATCCCACA 
TATCGTCATCGTACTGACTGTCTAGTCTAAACACATCCTATAGCCGATCGTACGACACATATCGTCATCGTACTGCCCTACGGGA 
CTGTCTAGTCTAAACACATCCATCGTACTGACTGCATCGTACGCCGATCGTACGACACATATCGTCATCGTACTGCCCTACGGGA 
CTGTCTAGTCTAAACACATCCATCGTACTGACTGCATCGTACTGACTGCATCGTACTGACTGCACATATCGTCATACATAGACTT 
CGTACTGACTGTCTAGTCTAAACACATCCCACATATCGTCATCGTACTGACTGTCTAGTCTAAACACATCCCACTTTACCCATGC 
ATCGTACTGACTGTCTAGTCTAAACACATCCCACATATCGTCATCGTACTGACTGTCTAGTCTAAACACATCCCAGCATCCATCC 
ATATCGTCATCGTACTGACTGTCTAGTCTAAACACATCCTATGCCGATCGTACGACACATATCGTCATCGTACTGCCCTACGGGA 
CTGTCTAGTCTAAACACATCCATCGTACTGACTGCATCGTACGACTGCATCGTACTGACTGCACATATCGTCATACATAGACTTC 
GTACTGACTGTCTAGTCTAAACACATCCCACATATCGTCATCGTACTGACTGTCTAGTCTAAACACATCCCACTTTACCCATGAT 
ATCGTCATCGTACTGACTGTCTAGTCTAAACACATCCCACACTGTCTAGTCTAAACACATCCATCGTACTGACTGCATCGTACGC 
CGATCGTACGACACATATCGTCATCGTACTGCCCTACGGGACTGTCTAGTCTAAACACATCCATCGTACTGACTGCATCGTACTG 



ATGCCGATCGTACGACACATATCGTCATCGTACTGACTGTCTAGTCTAAACACATCCATCGTACTGACTGCATCGATCCATTTTA 
TACTGACTGCATCGTACTGACTGCACATATCGTCATCGTACTGACTGTCTAGTCTAAACACATCCCACATATCGTTTACCCCATG 
CATCGTACTGACTGTCTAGTCTAAACACATCCCACATATCGTCATCGTACTGACTGTCTAGTCTAAACACATCCCAGCATCCATC 
CATATCGTCATCGTACTGACTGTCTAGTCTAAACACATCCTATGCCGATCGTACGACACATATCGTCATCGTACTGCCCTACGGG 
ACTGTCTAGTCTAAACACATCCATCGTACTGACTGCATCGTACTGACTGCATCGTACTGACTGCACATATCGTCATACATAGACT 
TCGTACTGACTGTCTAGTCTAAACACATCCCACATATCGTCATCGTACTGACTGTCTAGTCTAAACACATCCCACTTTACCCATG 
ATATCGTCATCGTACTGACTGTCTAGTCTAAACACATCCCACATATCGTCATCGTACTGACTGTCTAGTCTAAACACATCCTATA 
GCCGATCGTACGACACATATCGTCATCGTACTGCCCTACGGGACTGTCTAGTCTAAACACATCCATCGTACTGACTGCATCGTAC 
TGACTGCATCGTACTGACTGCACATATCGTCATACATAGACTTCGTACTGACTGTCTAGTCTAAACACATCCCACATATCGTCAT 
CGTACTGACTGTCTAGTCTAAACACATCCCACTTTACCCATGCATCGTACTGACTGTCTAGTCTAAACACATCCCACATAT 
ATCGTACTGACTGTCTAGTCTAAACACATCCCAGCATCCATCCATATCGTCATCGTACTGACTGTCTAGTCTAAACACATCCTAT 
GCCGATCGTACGACACATATCGTCATCGTACTGCCCTACGGGACTGTCTAGTCTAAACACATCCATCGTACTGACTGCATCGTAC 
TGACTGCATCGTACTGACTGCACATATCGTCATACATAGACTTCGTACTGACTGTCTAGTCTAAACACATCCCACATATCGTCAT 
CGTACTGACTGTCTAGTCTAAACACATCCCACTTTACCCATGATATCGTCATCGTACTGACTGTCTAGTCTAAACACATCCCACA 
TATCGTCATCGTACTGACTGTCTAGTCTAAACACATCCTATACATATCGTCATCGTACTGACTGTCTAGTCTAAACACATCCTAT 
GCCGATCGTACGACACATATCGTCATCGTACTGCCCTACGGGACTGTCTAGTCTAAACACATCCATCGTACTGACTGCATCGTAC 
TGACTGCATCGTACTGACTGCACATATCGTCATACATAGACTTCGTACTGACTGTCTAGTCTAAACACATCCCACATATCGTCAT 
CGTACTGACTGTCTAGTCTAAACACATCCCACTTTACCCATGATATCGTCATCGTACTGACTGTCTAGTCTAAACACATCCCACA 
TATCGTCATCGTACTGACTGTCTAGTCTAAACACATCCTATAGCCGATCGTACGACACATATCGTCATCGTACTGCCCTACGGGA 
CTGTCTAGTCTAAACACATCCATCGTACTGACTGCATCGTACGCCGATCGTACGACACATATCGTCATCGTACTGCCCTACGGGA 
CTGTCTAGTCTAAACACATCCATCGTACTGACTGCATCGTACTGACTGCATCGTACTGACTGCACATATCGTCATACATAGACTT 
CGTACTGACTGTCTAGTCTAAACACATCCCACATATCGTCATCGTACTGACTGTCTAGTCTAAACACATCCCACTTTACCCATGC 
ATCGTACTGACTGTCTAGTCTAAACACATCCCACATATCGTCATCGTACTGACTGTCTAGTCTAAACACATCCCAGCATCCATCC 
ATATCGTCATCGTACTGACTGTCTAGTCTAAACACATCCTATGCCGATCGTACGACACATATCGTCATCGTACTGCCCTACGGGA 
CTGTCTAGTCTAAACACATCCATCGTACTGACTGCATCGTACGACTGCATCGTACTGACTGCACATATCGTCATACATAGACTTC 
GTACTGACTGTCTAGTCTAAACACATCCCACATATCGTCATCGTACTGACTGTCTAGTCTAAACACATCCCACTTTACCCATGAT 
ATCGTCATCGTACTGACTGTCTAGTCTAAACACATCCCACACTGTCTAGTCTAAACACATCCATCGTACTGACTGCATCGTACGC 
CGATCGTACGACACATATCGTCATCGTACTGCCCTACGGGACTGTCTAGTCTAAACACATCCATCGTACTGACTGCATCGTACTG 



Most variants change a single DNA letter:

single nucleotide polymorphism (“SNP”)


Person 1


Person 2


Person 3


Person 4


A CT G G A CC T A GT 

A CT G G A CT A GT T 

A CT G G A CC T A GT 

A CT G G A CT A GT T 



Most variants change a single DNA letter:

single nucleotide polymorphism (“SNP”)


Red Sox fan 

Red Sox fan 

Yankees fan 

Yankees fan 

A CT G G A CC T A GT 

A CT G G A CT A GT T 

A CT G G A CC T A GT 

A CT G G A CT A GT T 



Human variation and common variants


C 

A 

C 

C 

C 

C 

A 

A 

A 

Shared, common variation

is the rule


(90% of heterozygosity)




Common disease-common variant hypothesis


• Most variation is evolutionarily neutral 

• Most of this neutral variation is due to common variants


Traits under negative selection will be largely due to rare 
variants 	•	 
– Pritchard et al., 2002 

	• Traits not under negative selection will be at least partly
	 
explained 

by common variants 

– Reich and Lander 2002





Cataloging common variation


• 10 million common SNPs (>1%)

• > 6 million are in databases 

Please refer to UCSC SNP browser website at 

http://genome.ucsc.edu/ 




How to use these tools to find (common) disease alleles?


• Study every (common) variant? 
– Unbiased, genome-wide search 
– Not currently practical 

• Need to select genes and variants to study




SNPs, patterns of variation, and complex traits


• Introduction 
• Common genetic variation and disease 
• Methods for finding variants for complex traits


• Interpreting genetic studies 
– Association 
– Linkage 
– Resequencing 

• What could we learn? 



Selecting genes and variants

Linkage: Narrow search to a small chromosomal region

– Affected relatives co-inherit markers in a region 


more often than expected by chance

– Monogenic disorders: successful 
– Multigenic disorders: less successful 

Association: Choose and test common variants in genes

– Candidate genes 
– Well-suited to common alleles of modest penetrance 

Association: Find and test rare variants in genes 
– Candidate genes 
– Resequencing to find rare variants 
– Very expensive 



Finding variants that affect complex traits


Search the whole genome Guess where to look


Linkage analysis Candidate gene studies




Association studies to find disease alleles


Normal

individuals


Alzheimers

patients




Association studies to find disease alleles


ApoE4


Normal

individuals


Alzheimers

patients




Association studies to find disease alleles


ApoE4


Normal

individuals


ApoE4


Alzheimers

patients




Association studies: which genes?


Linkage 

ExpressionPathways 



Type 2 diabetes: which genes?


Numerous studies 

Suggestive hints of linkage
Well established biology 
(insulin signaling, etc.) 

MODY

Linkage


Mouse models 

Oxidative phosphorylation 
Mitochondria 

Patti et al. 2003 
Mootha et al. 2003; 

ExpressionPathways 

Linkage



•
•

Association studies: which variants?


C AG C 

Ideally, causal variant available and genotyped 
Maximal power 
– marker tested is perfectly correlated with causal variant




Finding putative functional variants


• Missense variants 
– Easy to recognize 
– Many are mildly deleterious 
– Can group together variants (rare variant model) 



Finding putative functional variants


• Regulatory variants

– Hard to recognize

– May be enriched in evolutionarily conserved 

noncoding regions (ECRs) 

http://ecrbrowser.dcode.org/

Lawrence Livermore

Eddy Rubin group




Resequencing to discover variants


DNA samples


Resequence 

target regions 

(expensive) 


Identify SNPs 

(still not 


automated)




An association might be indirect, so we should 

understand correlation between variants…


C AG C 

Causal variant not genotyped 

Effect of causal variant inferred by genotyping neighboring SNPs 

Neighbors must be correlated (in linkage disequilibrium) with causal variant 



Haplotypes: patterns of variation at multiple markers (SNPs)
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Gabriel et al. 
Science 2002 

Daly et al. 
Nat Genet 

2001 



Using linkage disequilibrium (LD) to detect unknown variants
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C 
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C 

C 

A 

A 

Causal polymorphism 
* 

* 

* 

Gabriel et al. 
Science 2002 

Daly et al. 
Nat Genet 

2001 



Measuring linkage disequilibrium (D’)


1 2 3 4 5


1.00 
5.59 
1.00 

22.21 
1.00 
5.59 

1.00 
21.48 

1.00 
7.19 

1.00 
21.48 

0.54 
1.21 

0.19 
0.20 

0.54 
1.21 

0.45 
0.97 

1 

2 

3 

4 

D’ value 
LOD score in favor of LD 

Red means LD that is strong and significant 

5




13

“Blocks” of linkage disequilibrium

Block 1 Block 2

1 2 3 4 5 6 7 8 9 10 11 12 13


No association of marker 7 to others 

1 
2 

3 
4 

5 
6 

7 
8 9 

10 
11 

12 
13 

Strong association markers 8­

Strong association between markers 1-6 

Daly et al., Nature Genetics 2001; Gabriel et al., Science, 2002




Distribution of sizes of haplotype blocks


Gabriel et al. 2002




Haplotype diversity in blocks 

0 
1 
2 
3 
4 
5 
6 
7 

0 5 10 15 20 

Number of markers in block 

CEPH African-American Asian Yoruban 

Within blocks, only a few common haplotypes 

explain 90% of chromosomes in each sample


Fraction of all chromosomes in common 
haplotypes 

100% 

50% 

0% 

0 5 10 15 

Number of markers in block 

CEPH African-American 
Asian Yoruban 

4-5 common haplotypes ˜ 90% of all chromosomes


20 



Total haplotypes = 5.3 

2.7 

1.3 

0.1  ̀

0.3 

0.
1 

0.6
 

0.1 



Biological and demographic forces 

contribute to shaping haplotype blocks


“Hotspots” of recombination Human demographic history 

Please refer to
Jeffreys AJ, et. al.Intensely punctate meiotic
recombination in the class II region of the major
histocompatibility complex. Nat Genet. 2001 Oct;29(2):217-22.



Using tag SNPs to capture common variation


Haplotype Tag SNP 1 Tag SNP 2


A


A


A


B


B


C


C


By typing an adequate density of SNPs, one can identify tags that 

capture the vast majority of common variation in a region


Johnson et al., Nature Genetics 2001; Gabriel et al., 2002; Stram et al. 2003; others




Haplotype Map of Human Genome


Goals: 
• Define haplotype “blocks” across the genome
• Identify reference set of SNPs: “tag” each haplotype 
• Enable unbiased, genome-wide association studies 

www.hapmap.org; see Nature 2993 426:789-96 



Approach to LD-based association studies


SNPs from 
 QuickTime™ and a 
TIFF (LZW) decompressor

are needed to see this picture.database


Genotype SNPs in Measure LD, 
reference panels determine haplotypes 

and select tag SNPs 



SNPs, patterns of variation, and complex traits


• Introduction 
• Common genetic variation and disease 
• Methods for finding variants for complex traits


• Interpreting genetic studies 
– Association 
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• What could we learn? 



Association studies are powerful but problematic 

Most reported associations have not been consistently reproduced 

False positives False negatives 

• Original study was incorrect • Original study was correct 

• Follow-up studies were correct • Lack of power for weak effects

Population differences 
• Heterogeneity 
• True positive and negative studies 

InconsistencyInconsistency



What explains the lack of reproducibility?


False positives False negatives 

• Original study was incorrect • Original study was correct 

• Follow-up studies were correct • Lack of power for weak effects

Population differences 
• Heterogeneity 
• True positive and negative studies 

InconsistencyInconsistency



•

•

•

Review of association studies


603 associations of polymorphisms and disease 

166 studied in at least three populations 

Only six seen in =75% of studies 

Hirschhorn et al., Genetics in Medicine, 2002 



Highly consistently reproducible associations


Gene Polymorphism Disease 
APOE epsilon 4 Alzheimer’s Disease 
CCR5 delta32 HIV infection/AIDS 
CTLA4 T17A Graves’ Disease 
F5 R506Q Deep Venous Thrombosis 
INS VNTR Type 1 Diabetes 
PRNP M129V Creutzfeld-Jacob Disease 

What about the other 160? 

91/160 seen at least one more time




What explains the lack of reproducibility?


False positives 
• Multiple hypothesis testing

• Ethnic admixture/Stratification 

False negatives 
• Lack of power for weak effects 

• Variable LD with causal SNP 
• Population-specific modifiers 

InconsistencyInconsistency
Population differences 



Meta-analysis of association studies


•	 Selected 25 inconsistent associations with 
diallelic markers 
– Bipolar disease (2)
 301 studies, 


excluding original positive reports
– Schizophrenia (6) 
– Type 2 diabetes (9) If no true associations: 
– Random (8) expect 5% to have P < 0.05


1% to have P < 0.01, etc.


Lohmueller et al., Nature Genetics 2003




•

Rate of replication for 25 inconsistent associations


Large excess of significant follow-up studies 

– 20% of 301 studies had P < 0.05 (vs. 5% expected, P< 10-14)

– Most (47/59) were in same direction as original report 
– Replications were clustered among 11 of the 25 associations




Publication bias - can it explain excess replications?



•

•

Rate of replication for 25 inconsistent associations


Large excess of significant follow-up studies 

– 20% of 301 studies had P < 0.05 (vs. 5% expected, P< 10-14)

– Most (47/59) were in same direction as original report 
– Replications were clustered among 11 of the 25 associations


Probably not publication bias 
– Requires postulating 40-80 unpublished studies/association




What explains the lack of reproducibility?


False positives 
• Multiple hypothesis testing

• Ethnic admixture/Stratification 

False negatives 
• Lack of power for weak effects 

• Variable LD with causal SNP 
• Population-specific modifiers 

InconsistencyInconsistency
Population differences 



What explains the lack of reproducibility?


False positives 
• Multiple hypothesis testing 
• Ethnic admixture/Stratification 

False negatives 
• Lack of power for weak effects 

• Population-specific modifiers 
InconsistencyInconsistency

Population differences 
• Variable LD with causal SNP 




Ethnic admixture and population stratification


Cases


Well-matched


No stratification


Controls




Ethnic admixture and population stratification


Cases


Poorly matched


Stratification present


Controls




Assessing and controlling for stratification


• Family-based tests of association 
– TDT 
– Sib-based tests (SDT, PDT, Sib-TDT) 
– FBAT 

• Genomic control 
– Type many random markers 
– Determine frequency of false positive associations 
– Use genotype data to match cases and controls


Spielman et al. 1993; Spielman and Ewens 1998; Martin et al 2000; Horvath et al. 

2001; Pritchard and Rosenberg 1999; Pritchard et al. 2000; Devlin and Roeder, 1999; 


Reich and Goldstein, 2001




•

•

•

Rate of replication for 25 inconsistent associations


Large excess of significant follow-up studies 

– 19% of 298 studies had P < 0.05 (vs. 5% expected, P< 10-14) 
– Most (45/56) were in same direction as original report 
– Replications were clustered among 11 of the 25 associations


Probably not publication bias 
– Requires postulating 40-80 unpublished studies/association


Probably not population stratification/admixture 
– Family-based controls and/or seen in multiple ethnic groups




Association studies are powerful but problematic 

Most reported associations have not been consistently reproduced 

False positives False negatives 
• Multiple hypothesis testing • Lack of power for weak effects

• Ethnic admixture/Stratification 

• Variable LD with causal SNP 
• Population-specific modifiers 

InconsistencyInconsistency
Population differences 



Using linkage disequilibrium (LD) to detect unknown variants


Causal SNP
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Different patterns of LD can yield different strength signals


Causal SNP


C 

C 

C 

C 

C 

A 

A 

A 
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AG 
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C-A 
haplotype 
without 
causal 
SNP 

A 

A 

G 

G 

AG A CC 

C 

C 

C 

A CC 

A CC 

Determining the LD patterns around associated SNPs may be critical 



Association studies are powerful but problematic 

Most reported associations have not been consistently reproduced 

False positives False negatives 
• Multiple hypothesis testing • Lack of power for weak effects

• Ethnic admixture/Stratification 

• Population-specific modifiers 
InconsistencyInconsistency

Population differences 
• Variable LD with causal SNP 



Modest effects and lack of power cause inconsistency


Diabetes 

Cancer Epidemiology Biomarkers


 

& Prevention 
 

Nature genetics 

8/25 associations replicate


The American Journal 
 All eight increase risk by
of Human Genetics 

less than 2-fold 

Pool all data for 25 

associations
 Lohmueller et al., Nature Genetics, 2003 



•

•

First positive reports are unreliable estimators


24/25 first positive reports overestimated the genetic effect


Consistent with “winner’s curse”?




•

“Winner’s curse”


Best described for auction theory


Unbiased bids 

fluctuate around 


true value


Winning bid 

overestimates value


True value




Winner’s curse and association studies


•	 In association studies, first positive report is 
equivalent to winning bid 

•	 23/25 associations consistent with winner’s curse




Meta-analysis of association studies


•	 A sizable fraction (but less than half) of reported 
associations are likely correct 

•	 Genetic effects are generally modest 
– Beware the winner’s curse 

•	 Large study sizes are needed to detect these reliably




Example: PPARg Pro12Ala and diabetes


Oh et al.

Deeb et al.

Mancini et al.

Clement et al.

Hegele et al.

Hasstedt et al.

Lei et al.

Ringel et al.

Hara et al.

Meirhaeghe et al.

Douglas et al.

Altshuler et al.

Mori et al.


All studies 

Overall P 

N > 20,000 alleles 

value ˜  10-9 

Estimated risk 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2.0 
(Ala allele) 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 

Sam
ple size 

Ala is protective




•

•

•

Should we believe association study results? 

Initial skepticism is warranted 

Replication, especially with low p values, is encouraging 

Large sample sizes are crucial 



Applying Bayes’ theorem to association studies


Pr(Causal | Assoc) = 

Pr(Assoc | Causal)*Pr(Causal) 

Power Prior probability 

P value 

Pr(Assoc | Causal)*Pr(Causal) + Pr(Assoc | Not causal)*(1-Pr(Causal)) 

Pr(Causal) = probability variant is causal


Pr(Assoc) = probability of observing an association


We observe associations, and we are interested in Pr (Causal | Assoc),

which is the probability of the variant being causal given the data we

observe 



What are the prior probabilities?
 

• Random variants: 
• About 600,000 independent common variants
 

• At least a few will be causal 
• Prior probability = 1/10,000 - 1/100,000 



•
•

•
•

What are the prior probabilities?


Candidate genes: 
300 candidate genes * 12 independent variants/gene = 

3,600 candidate variants 
Assume half of all causal variants are in candidate genes 
Prior probability = 1/100 - 1/1,000 



•
•

•
•

What are the prior probabilities?


Positional candidate genes (linkage):

About 100 candidate genes * 12 variants/gene = 1,200 
candidate variants 
Only one causal gene 
Prior probability = 1/1,000 

Positional candidates (genes under linkage peaks) 


are about as plausible as other candidate genes




Bayes’ Theorem in action


Type of variant 
Prior 

probability P value 
Posterior 

probability 

Great candidate 0.01 0.05 0.14 

Typical candidate 0.001 0.05 0.015 

Positional candidate 0.001 0.05 0.015 

Random gene 0.0001 0.05 0.0015 

A single P value of 0.05 is probably, or nearly certainly, a false association




Bayes’ Theorem in action


Type of variant 
Prior 

probability P value 
Posterior 

probability 

Great candidate 0.01 4 x 10-4 0.95 

Typical candidate 0.001 4 x 10-5 0.95 

Positional candidate 0.001 4 x 10-5 0.95 

Random gene 0.0001 4 x 10-6 0.95 

Low P values are required for higher degrees of certainty




Conclusions


•	 Most reported associations are likely false 
•	 Some will turn out to be correct 
•	 Previous evidence of association is relevant if: 


–	P values are low (< 10-3 in the best case) 
– Associations are replicated, or 
– There is a very good reason for plausibility 

•	 Genes under linkage peaks are more or less 
equivalent to other candidate genes 



Similar issues arise in linkage studies


• Most regions of linkage not reproduced 

• Why? 
– Population-specific differences 
– False positives (although this is better understood) 
– Lack of power and expected statistical variation




What about rare variant association studies?


Genotype in unaffectedResequence gene
in 

Identify variants

affected individuals individuals 



A possible resequencing association study


Resequence gene X

in 200 

Identify variants: 

Type 200 healthy individuals:


10 rare missense variants 

Variants not seen at all!diabetic individuals


Rare missense variants in gene X cause diabetes! 



A possible resequencing association study


Resequence gene X

in 200 

Identify variants: 

Type 200 healthy individuals:


10 rare missense variants 

Variants not seen at all!diabetic individuals


Rare missense variants in gene X make you root for the Red Sox!



E Expected allele frequency depends on depth of resequencing

Common variants 
Frequency 1 in 5

Rare variants
Frequency 1/10,00



Don’t get fooled again…


•	 Controls must be resequenced with equal vigor!


•	 Rare variants must be grouped for analysis, 
BEFORE knowing the association study results 



SNPs, patterns of variation, and complex traits


• Introduction 
• Patterns of human genetic variation and disease


• Finding variants for complex traits 
– Linkage 
– Association 

• Interpreting genetic studies 
• What could we learn? 



Prediction/Prevention


general population 
high risk (intervene) 

Will get 
disease 

low risk 

Will remain 
disease-free 



Reclassification to guide therapy


All patients 

Classify by DNA 
sequence and/or 
expression profile 

Treatment A


Treatment B


Treatment C


Treatment D




CYP2C9 and Warfarin


Prevalence of low activity alleles


Two common low 
activity alleles 

2 alleles = 6x risk of 
serious complications 

1999 

0 
1 
275% 

20% 

5% 

Higashi et al. JAMA 2002; Aithal et al. Lancet 

Dosage and low activity alleles 

210 

6
5
4
3
2
1
0 

Number of low activity alleles 



Genetic risk factors identify therapeutic targets


Sulfonylurea: Thiazoladinedione

Kir6.2 E23K PPARg P12A




Goal: Connect genotypic variation with phenotypic variation 
 

Inherited DNA sequence variation Variation in phenotypes
 
?



Potential difficulties


• Privacy concerns 
– Insurance discrimination 

• Improper interpretation of “predictive” information

– Misguided interventions 
– Psychological impacts 

• Impact on reproductive choices 
• Interaction with concepts of race and ethnicity 
• Genetics of performance 
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