Harvard-MIT Division of Health Sciences and Technology HST.508: Quantitative Genomics, Fall 2005 Instructors: Leonid Mirny, Robert Berwick, Alvin Kho, Isaac Kohane



Children's Hospital Informatics Program

Harvard Medical School

#### Human Variations Genes, Genotypes and Generations

Marco F. Ramoni Children's Hospital Informatics Program at Harvard-MIT Division of Health Sciences and Technology Harvard Partners Center for Genetics and Genomics Harvard Medical School



#### Introduction

- \* On February 12, 2001 the Human Genome Project announces the completion of a first draft of the human genome.
- \* Among the items on the agenda of the announcement, a statement figures prominently:

A SNP map promises to revolutionize both mapping diseases and tracing human history.

SNP are Single Nucleotide Polymorphisms, subtle variations of the human genome across individuals.

\* You can take this sentence as the announcement of a new era for population genetics.



# Outline

#### Properties of the Genome

Basics

- 80s revolution and HGP;
- Genetic polymorphisms;
- Evolution and selection;

Genetic diseases

- Tracking genetic diseases;
- Traits and complex traits;

Genomic diseases

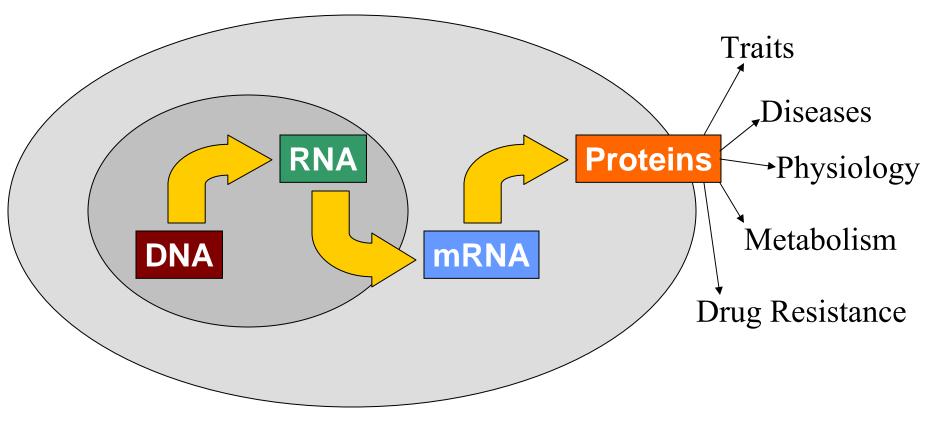
- Blocks of heredity;
- Tracking blocks.

#### The Genetic Study of the Future

Candidates identification

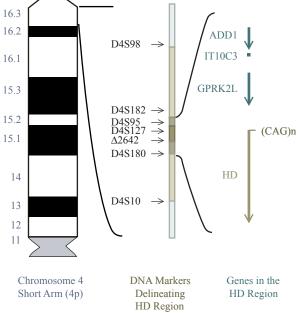
- Find the genes;
- Find the SNPs;

Study design


- Case/control studies;
- Pedigree studies;
- Trios, sibs and TDT;

Study analysis

- Single gene association;
- Multivariate association;
- Validation.




## **Central Dogma of Molecular Biology**



#### The 80s Revolution and the HGP

- \* The intuition that polymorphisms could be used as markers sparkled the revolution.
- Mendelian (single gene) diseases: Autosomal dominant (Huntington).
   Autosomal recessive (C Fibrosis).
   X-linked dominant (Rett).
   X-linked recessive (Lesch-Nyhan).
- Today, over 400 single-gene diseases have been identified.
- This is the promise of the HGP.



Harvard

Medical School

Figure by MIT OCW.



# Terminology

Allele: A sequence of DNA bases.

Locus: Physical location of an allele on a chromosome.

Linkage: Proximity of two alleles on a chromosome.

Marker: An allele of known position on a chromosome.

Phenotype: An outward, observable character (trait).

Genotype: The internally coded, inheritable information.

Penetrance: No. with phenotype / No. with allele.

Correspondence: Male cM ~ 1.05Mb; Female cM ~ 0.88Mb.

Cosegregation: Alleles (or traits) transmitted together.

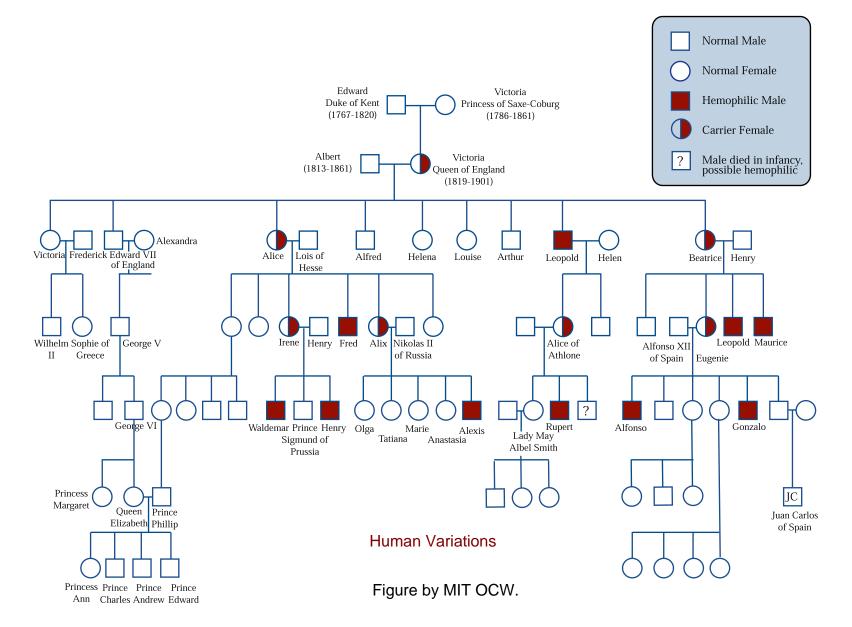


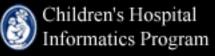
#### Distances

- Physical distance: Physical distances between alleles are basepairs. But the recombination frequency is not constant.
- Segregation (Mendel's first law): Allele pairs separate during gamete formation and randomly reform pairs.
- Morgan: A distance is based on the probability of recombination.
- CentiMorgan: 1 centiMorgan (cM) between two loci means that they have 1% chances of being separated by recombination.
- Physical maps: in base-pairs. (Human autosomal map: 3000Mb).
- Linkage maps: in centiMorgan (Male 2851cM, Female: 4296cM).
- Physical/Linkage: A genetic distance of 1 cM is roughly equal to a physical distance of 1 million base pairs (1Mb).



#### Hemophilia, a Sex Linked Recessive


- Hemophilia is a X-linked recessive disease, that is fatal for women.
- \* X-linked means that the allele (DNA code which carries the disease) is on the X-chromosome.
- \* A woman (XX) can be carrier or non-carrier: if x=allele with disease, then xX=carrier; xx=dies; XX=non carrier.
- \* A male (YX) can be affected or not affected: (xY= affected; XY=not affected).




Harvard Medical

Medical School

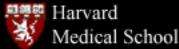
#### Hemophilia: A Royal Disease



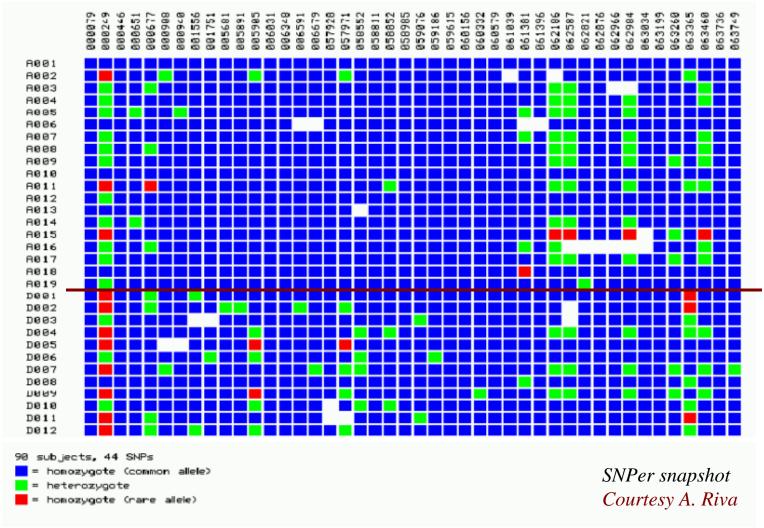


# Single Nucleotide Polymorphisms

\* Variations of a single base between individuals:


- ... ATGCGATCGATACTCGATAACTCCCGA ...
- ... ATGCGATCGATACGCGATAACTCCCGA ...
- \* A SNP must occur in at least 1% of the population.
- **\*** SNPs are the most common type of variations.
- Differently to microsatellites or RTLPs, SNPs may occur in coding regions:

cSNP: SNP occurring in a coding region.


- rSNP: SNP occurring in a regulatory region.
- **sSNP**: Coding SNP with no change on amino acid.



Children's Hospital Informatics Program



#### **Reading SNP Maps**





# Hardy-Weinberg Law

Hardy-Weinberg Law (1908): Dictates the proportion of major (p), minor alleles (q) in equilibrium.

 $p^2 + 2pq + q^2 = 1.$ 

Equilibrium: Hermaphroditic population gets equilibrium in one generation, a sexual population in two.

Example: How many Caucasian carriers of C. fibrosis? Affected Caucasians  $(q^2) = 1/2,500$ . Affected Alleles (q)=1/50=0.02. Non Affected Alleles (p) = (1 - 0.02) = 0.98. Heterozygous  $(2pq) = 2(0.98 \times 0.02) = 0.04 = 1/25$ .



#### Assumptions

Random mating: Mating independent of allele.

Inbreeding: Mating within pedigree;

Associative mating: Selective of alleles (humans).

Infinite population: Sensible with 6 billions people.

Drift: Allele distributions depend on individuals offspring. Locality: Individuals mate locally;

Small populations: Variations vanish or reach 100%.

Mutations contrast drift by introducing variations.

Heresy: This picture of evolution as equilibrium between drift and mutation does not include selection!



## **Natural Selection**

| AA  | Aa  | aa  |
|-----|-----|-----|
| 36% | 48% | 16% |

Fitness (w): AA=Aa=1, aa=0.8. Selection: s = 1-w = 0.2:

Example: p=0.6 and q=0.4.

$$\delta p = \frac{spq^2}{1 - sq^2} = \frac{(0.2)(0.6)(0.4)^2}{1 - (0.2)(0.4)^2} = \frac{0.019}{0.968} = 0.02$$

Selection: Effect on the 1<sup>st</sup> generation is A=0.62 a=0.38.

| AA    | Aa    | aa    |
|-------|-------|-------|
| 39.7% | 46.6% | 13.7% |
| +3.7% | -1.4% | -2.3% |

Rate: The rate decreases. Variations do not go away.



#### **Does it work?**

Race and Sanger (1975) 1279 subjects' blood group.  $p = p(M) = (2 \times 363) + 634 / (2 \times 1279) = 0.53167.$ 

|          | MM     | MN     | NN     |
|----------|--------|--------|--------|
| Observed | 363    | 634    | 282    |
| Expected | 361.54 | 636.93 | 280.53 |

Caveat: Beta-hemoglobin sickle-cell in West Africa:

|          | AA          | AS       | SS     |
|----------|-------------|----------|--------|
| Observe  | d 25,374    | 5,482    | 64     |
| Expected | d 25,561.98 | 5,106.03 | 254.98 |



#### **Not Always**

Race and Sanger (1975) 1279 subjects' blood group.  $p = p(M) = (2 \times 363) + 634 / (2 \times 1279) = 0.53167.$ 

|          | MM     | MN     | NN     |
|----------|--------|--------|--------|
| Observed | 363    | 634    | 282    |
| Expected | 361.54 | 636.93 | 280.53 |

Caveat: Beta-hemoglobin sickle-cell in West Africa:

|    |                                         | AA        | AS       | SS     |
|----|-----------------------------------------|-----------|----------|--------|
|    | Observed                                | 25,374    | 5,482    | 64     |
|    | Expected                                | 25,561.98 | 5,106.03 | 254.98 |
| +/ | terozvanus selective advantage: Malaria |           |          |        |

Reason: Heterozygous selective advantage: Malaria.



#### Linkage Equilibrium/Disequilibrium

Linkage equilibrium: Loci Aa and Bb are in equilibrium if transmission probabilities  $\pi_A$  and  $\pi_B$  are independent.

 $\pi_{AB} = \pi_A \pi_{B.}$ 

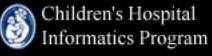
Haplotype: A combination of allele loci:  $\pi_{AB}$ ,  $\pi_{Ab}$ ,  $\pi_{aB}$ ,  $\pi_{ab}$ . Linkage disequilibrium: Loci linked in transmission as.

$$r^2 = \frac{\left(\pi_{AB} - \pi_A \pi_B\right)^2}{\pi_A \pi_B \pi_a \pi_b}$$

a measure of dependency between the two loci. Markers: Linkage disequilibrium is the key of markers.



# Phenotype and Genotype


Task: Find basis (genotype) of diseases (phenotype). Marker: Flag genomic regions in linkage disequilibrium. Problem: *Real* genotype is not observable. Strategy: Use marker as genotype proxy. Marker Condition: Linkage disequilibrium. **Dependency:** Observable Linkage Disequilibrium measure of dependency Dependency between marker and phenotype. Phenotype Genotype Cause



# **Complex Traits**

Problem: Traits don't always follow single-gene models.

- Complex Trait: Phenotype/genotype interaction. Multiple cause: Multiple genes create phenotype. Multiple effect: Gene causes more than a phenotype.
- Caveat: Some Mendelian traits are complex indeed.
   Sickle cell anemia: A classic Mendelian recessive.
   Pattern: Identical alleles at beta-globulin locus.
   Complexity: Patients show different clinical courses, from early mortality to unrecognizable conditions.
   Source: X-linked locus and early hemoglobin gene.



# **Feasibility: Time and Cost**

Base: Number of SNPs per individual: 3,000,000

Costs: How much for a genome-wide SNP scan? Cost of 1 SNP: 0.30-0.45\$ (soon 0.10-0.20\$) Cost of a 10kb SNP map/individual: 90,000 (30,000) Cost of a 1000 individuals study: 90,000k (30,000k) Cost of 1000 complete maps: 900,000k (300,000k)

Time: How long does it take?

1 high throughput sequencer: 50,000 SNPs/day Effort 1000 10kb SNP maps: ~700 days/man Effort 1000 complete SNP maps: ~7000 days/man



# Haplotypes

- LD (r2) distances can be used to identify haplotypes.
- Haplotypes are groups of SNPs transmitted in "blocks".
- These blocks can be characterized by a subset of their SNPs (tags).
- Since they are the result of an underlying evolutionary process, they can be used to reconstruct ancestral DNA.

Figure removed due to copyright reasons.



# **Identifying Haplotypes**

- Dely et at. report an high-resolution analysis of the haplotype structure of a stretch of chromosome 5q31 500Kbs long.
- **\*** There are 103 SNPs in the stretch.
- \* The SNPs were selected if the minor allele frequency was higher than 5%.
- Sample were 129 trios (nuclear families) of European descent with children affected by Crohn disease.
- \* Therefore, they had 258 transmitted and 258 nontransmitted chromosomes.



# Haplotype Blocks

- The resulting picture portraits the stretch separated in 11 blocks separated by recombination points.
- \* Haplotype patterns travel together (blocks in LD) and therefore the authors infer 4 ancestral haplotypes.

Figure removed due to copyright reasons.



# Haplotype Tagging

Haplotypes: As not all combinations appear, we need fewer SNPs.

Goal: Smallest set of SNPs deriving all the other SNPs.

htSNPs: These tagging SNPs are called haplotype tagging SNPs.

Problem: Intractable task (for 136 bases any relativistic machine would take more than the age of the universe).

Figure removed due to copyright reasons.



#### The Genomic Study of the Future

- The context: Sickle cell anemia is a monogenic disorder due to a mutation on the β-globin (HBB) at 11p15.5.
- The problem: SCA phenotype ranges from asymptomatic to early childhood death.
- The phenotype: SCA subjects have an increased risk of stroke (6-8%) before 18 yrs.
- The hypothesis: Other genes modulate this risk of stroke.

Figure removed due to copyright reasons.



# **Finding Candidate Genes**

Rationale: Bar a genome-wide scan you need likely culprits.

Start: OMIM (NCBI/NIH)

Extend:

- ✓ Literature;
- ✓ Regions;
- ✓ Microsatellites;
- Mechanisms of actions (pathways);

Refinement: Cast a large net and run a wide scan on a subset of patients. Screenshot removed due to copyright considerations. Please see http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM



# **Finding The Right SNPs**

Option 1. Finding the causative SNP:

Rationale: Find the cause, select if there is a functional role. Drawback: What is functional? Exons, promoter, splicing, etc.

Option 2. Finding related SNPs:

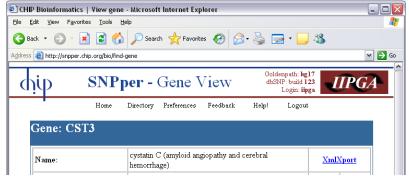
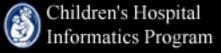

Rationale: Chose SNPs that represent the gene through LD. Drawback: Tough to get the causative root.

Figure removed due to copyright reasons.



### **Hunting Causative SNPs**


- Strategy: Select the SNPs on the basis of their role.
- Options: Non synonymous, in exons, in promoter, in other regulatory region.
- Source: dbSNP (NCBI/NIH).
- Faster: Portal SNPPER.
- Bonus: Primer design.
- Example: Select all the SNPs in CST3 located on exons.
- Filtering: From 146 to 26.
- Problem: Uncovered regions.



#### SNPset: SS3784 Source: Gene CST3 03/07/2005 23:09:38 Created on: SNPs: 26 (avg dist: 926) Filter: Exon Export: SNPset data Genotype data AmLXport Exons total: 🗉 3 Internet

Human Variations

Courtesy of Dr. Alberto A. Riva. Used with permission.



#### **Fishing Across Genes**

- Rationale: Find the optimal coverage for the entire gene.
- Problem: We need to know how SNPs are transmitted together in the population.

Source: HapMap.org

- Hapmap: Genotype of 30 trios in 4 populations every 5k bases.
- Strategy: 1) Identify blocks of LD and 2) Choose the SNPs that represent these blocks.

Figure removed due to copyright reasons.



#### **Genome Wide Scan**

- Technologies for genotyping:
- By SNP (individual primer);
- By Sample/Locus;
- Genome-wide: GeneChip® Mapping 100K Set (soon 500k) using a technology similar to expression arrays.
- \$ 500k means 1 SNP every 6, close to the resolution of the HapMap.

Figure removed due to copyright reasons.



# **Study Design**

Classification by sampling strategy:

Association: Unrelated subjects with/out phenotype. Case/Control: Two sets of subjects, with and without. Cohort: Natural emergent phenotype from study.
Pedigrees: Traditional studies focused on heredity. Large pedigree: One family across generations. Triads: Sets of nuclear families (parents/child). Sib-pairs: Sets of pair of siblings.

Classification by experimental strategy:
 Double sided: Case/control studies.
 Single sided: e.g trios of affected children.



# **Association Studies**

Method: Parametric method of association.

Strategy: Traditional case vs control approach.

Test: Various tests of association.

Sample: Split group of affected/unaffected individuals.

Caveats: Risk of stratifications (admixtures) - case/control split by populations.

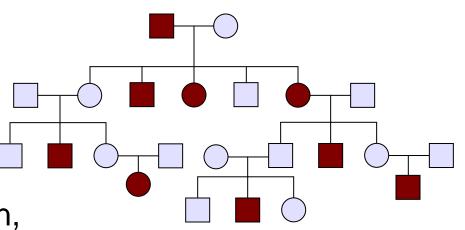
Advantages: Easily extended to complex traits and ideal for exploratory studies.





# Linkage Analysis

Method: Parametric model building.


Strategy: Compare a model with dependency between phenotype and allele against independence model.

Test: Likelihood ratio - or lod score log(LR).

 $LR = \frac{p(Data \mid M_1)}{p(Data \mid M_0)}$ 

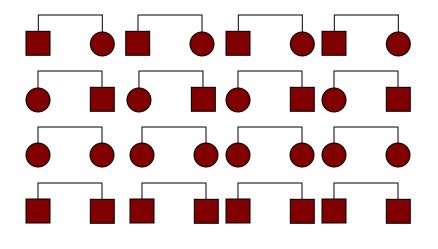
Sample: Large pedigree or multiple pedigrees.

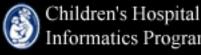
Caveats: Multiple comparison, hard for complex traits.





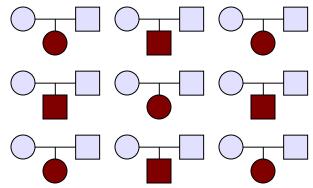
# **Allele Sharing**


Method: Non parametric method to assess linkage.


Test: An allele is transmitted in affected individuals more than it would be expected by chance.

Sample: It uses affected relatives in a pedigree, counts

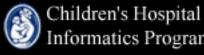
how many times a region is identical-by-descent (IBD) from a common ancestor, and compares this with expected value at random.


Caveats: Weak test, large samples required.





#### **Transmission Disequilibrium Test**


- Method: Track alleles from parents to affected children.
- Strategy: Transmitted=case / non transmitted=controls.
- Test: Transmission disequilibrium test (TDT).
- Sample: Triads of affected child and parents.
- Caveats: Test is not efficient and is prone to false negatives.
- Advantages: Powerful test and stratification not an issue.





# **Stroke Study Design**

- Design: Nation-wide cohort study of over 4000 African American in 26 centers.
- Subjects: 1392 SCA subjects with at least one complication from SCA (92 with stroke, 6.2%).
- Genes: 80 candidate genes involved in vaso-regulation, inflammation, cell adhesion, coagulation, hemostasis, proliferation, oxidative biology and other functions.
- SNPs: Coverage selected with bias to function (256).
- **Risk factors:**  $\alpha$ -thalassemia, history, age, gender.
- Filtering: Missing data and Hardy-Weinberg on unaffected reduces the set to 108 SNPs on 80 genes.



## **Single Gene Association**

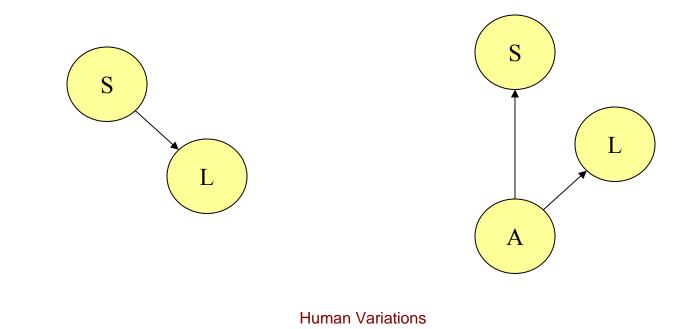
Method: One SNP at the time.

Analysis: Test statistics (like we had an hypothesis).

Style: Observational by pseudo hypothesis-driven.

**Results**: A list of SNP/genes.

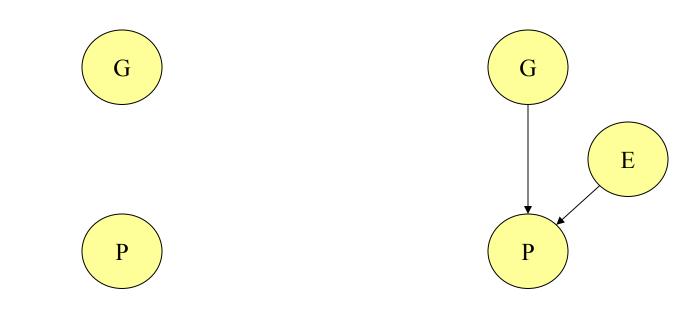
Validation: Replication.


Table removed due to copyright reasons.

Please see table 2 in Hoppe, et al. "Gene interactions and stroke risk in children with sickle cell anemia." Blood 103 (Mar 2004): 2391-2396.



### **Spurious Association/Confounding**


- \* Association of shoe size (S) and literacy (L) in kids.
- If I act on S, I will not change L: If you buy bigger shoes, will your kids learn more words?
- No: age (A) make S and L conditionally independent.





## **Missed Associations**

#### Gene environment interaction:

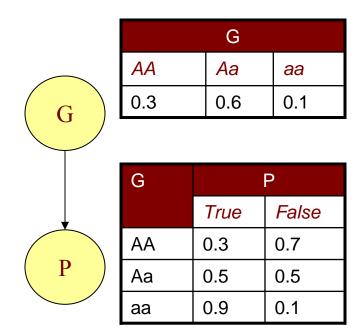


No association between genotype and phenotype

Association appears conditional on an environmental factor



#### **Bayesian Networks**


Definition: Direct acyclic graph (DAG) encoding conditional independence/dependence.

Qualitative:

Node: stochastic variables (SNPs, phenotypes, etc). Arcs: Directed stochastic dependencies between parents and children.

#### Quantitative:

CPT: Conditional probability tables (distributions) that shape the dependency.





## Learning Networks

Processes: Data are generated by processes.

Probability: The set of all models is a stochastic variable  $\mathcal{M}$  with a probability distribution  $p(\mathcal{M})$ .

Selection: Find the most probable model given the data.

$$p(M \mid \Delta) = \frac{p(\Delta, M)}{p(\Delta)} = \frac{p(\Delta \mid M)p(M)}{p(\Delta)}$$

Estimation: Probabilities can be seen as relative frequencies:

$$p(x_i \mid \pi_i) = \frac{n(x_i \mid \pi_i)}{\sum_j n(x_i \mid \pi_i)}$$

$$p(x_{j} | \pi_{i}) = \frac{a_{ij} + n(x_{j} | \pi_{i})}{\sum_{j} a_{ij} + n(x_{j} | \pi_{i})}$$

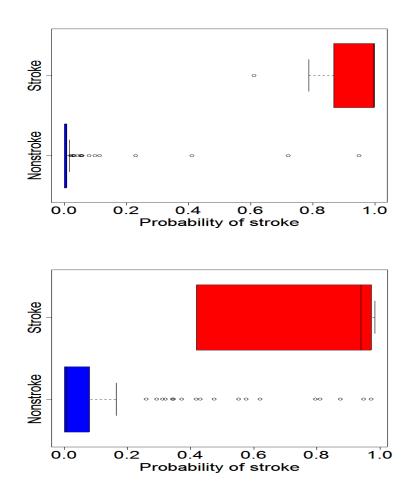


#### Network

Figure removed due to copyright reasons.



#### **Prognostic Modeling**


- Prediction: The method used for the predictive validation can be used to compute the risk of stroke given a patient's genotypes.
- Prognosis: We can build tables of risks for patients and predict the occurrence of stroke in 5 years.
- Extension: How about this risk scheme as a model of stroke in the general population?

| Risk              | <b>ANXA2.6</b><br>hCV26910500 | BMP6.10<br>rs267196 | BMP6.12<br>rs408505 | <b>SELP.14</b><br><i>r</i> s3917733 | <b>TGFBR3.10</b><br>rs284875 | <b>ERG.2</b><br>rs989554 | Ν  |
|-------------------|-------------------------------|---------------------|---------------------|-------------------------------------|------------------------------|--------------------------|----|
| 0.007 (0;0.03)    | AG                            | TT                  | TT                  | СТ                                  | СТ                           | AG                       | 1  |
| 0.06 (0;0.38)     | AG                            | TT                  | TT                  | СТ                                  | CC                           | AG                       | 4  |
| 0.185 (0.09;0.30) | AA                            | TT                  | СТ                  | CC                                  | CC                           | AA                       | 50 |
| 0.727 (0.61;0.83) | AA                            | TT                  | CC                  | CC                                  | CC                           | AA                       | 64 |
| 0.868 (0.70;0.97) | GG                            | TT                  | CC                  | CC                                  | CC                           | AA                       | 21 |
| 0.968 (0.79;1)    | GG                            | TT                  | CC                  | СТ                                  | CC                           | AA                       | 8  |



#### **Predictive Validation**

Cross Validation: 98.8% Validation: Stroke prediction of subjects in different 114 population (not the cohort). Accuracy: 98.2%: TPR=100%; TNR=98.1% (2 errors). regression: Logistic Identify regressors at p-value < 0.05. Model: 5 (SELP/BMP6) & HbF. Accuracy: 88% accurate: TPR: 0.57% (3 errors); TNR: 0.9% (10 errors).





# Why we do not find the causes for complex traits?

- Because we look at one gene at the time.
- Genes work together (need more than one gene to get the phenotype) but also in a redundant way (phenotype through alternative paths).
- Long distance disequilibrium, reveals more complex structures in the population.
- Prediction is necessary.

| Gene Symbol | Position | Single Gene |      |
|-------------|----------|-------------|------|
|             |          | Accuracy    | Cont |
| ADCY9       | 16p13.3  | 71.93%      | 2%   |
| ANXA2       | 15q22.2  | 43.86%      | 2%   |
| BMP6        | 6p24.3   | 83.33%      | 5%   |
| CSF2        | 5q23.3   | 50.88%      | 1%   |
| ECE1        | 1p36.12  | 13.15%      | 0.2% |
| ERG         | 21q22.2  | 42.98%      | 1%   |
| MET         | 7q31.2   | 23.68%      | 1%   |
| SCYA        | 17q11.2  | 55.14%      | 1%   |
| SELP        | 1q24.2   | 80.70%      | 7%   |
| TEK         | 9p21.2   | 8%          | 1%   |
| TGFBR3      | 1p22.1   | 50.88%      | 2%   |
| HbF.P       |          | 72.81%      | 1%   |

**A Holistic System** 

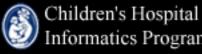


# **Human Variation Omnibus**

Definition: The Human Variation Omnibus (HVO) is a open repository of genotype studies.

Ancestors: Gene Expression Onmibus.

Aims:


- Collection/Distribution: Collect and distribute data related to publications.
- Transparence: Facilitate reproducibility.
- Reusability: Re-use data for search, comparison and candidate SNP/genes identification.
- Integration: Integration of multiple data sources to obtain a overall perspective on the problem.



Harvard Medical School

#### **The Architecture**

Figure removed due to copyright reasons.



### **Collection and Storage**

Submission: Data are submitted as a single study file.

- Challenge: Make submission easy but get as much information as possible.
- Portability: Across subject areas.
  - Phenotype: MeSH.
  - Genotype: dbSNP and Celera.
  - Exposures: Standardized (gender, race, etc).
- Enforcement: Today, microarray experiment data are published (submitted) at paper submission time through editorial policies (Nature, Science, PNAS).





Figure removed due to copyright reasons.





Figure removed due to copyright reasons.



## **Retrieval and Exploration**

Retrieval: The general aim is distribution.

By Study: download as files.

- By Phenotype: Useful for single variant validation.
- By Genotype: Useful for candidate genes analysis.

Exploration: Novel analytical tools.

- Single Variation Associations: Across phenotypes with different statistical methods.
- Genomic Properties : Linkage disequilibrium,
  - haplotype analysis, haplotype tagging.
- Virtual Operations: Candidate genes, sample size simulations, etc.





Figure removed due to copyright reasons.



Children's Hospital Informatics Program

Harvard Medical School

Figure removed due to copyright reasons.