MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.436J/15.085J Fall 2018 Recitation 9

Exercise 1.

- (a) If $X_1 \sim Cauchy(0, \gamma_1)$, $X_2 \sim Cauchy(0, \gamma_2)$, and they are independent, then $X_1 + X_2 \sim Cauchy(0, \gamma_1 + \gamma_2)$.
- (b) If $X \sim Cauchy(0, \gamma)$, then $\alpha X \sim Cauchy(0, \alpha \gamma)$, for all $\alpha > 0$.
- (c) Let $\{X_n\}$ be a sequence of i.i.d. random variables, with $X_1 \sim Cauchy(0, \gamma)$. Then,

$$\frac{X_1 + \dots + X_n}{n} \sim Cauchy(0, \gamma),$$

for all n.

Solution:

(a) We have

$$\phi_{X_1+X_2}(t) = \phi_{X_1}(t)\phi_{X_2}(t) = \exp\left(-\gamma_1|t|\right)\exp\left(-\gamma_2|t|\right) = \exp\left(-(\gamma_1+\gamma_2)|t|\right),$$

which corresponds to a $Cauchy(0, \gamma_1 + \gamma_2)$.

(b) We have

$$\phi_{\alpha X}(t) = \phi_X(\alpha t) = \exp(-\alpha \gamma |t|),$$

which corresponds to a $Cauchy(0, \alpha \gamma)$.

(c) We have

$$\phi_{\frac{X_1 + \dots + X_n}{n}}(t) = \prod_{k=1}^n \phi_{X_k} \left(\frac{t}{n}\right)^n$$
$$= \prod_{k=1}^n \exp\left(-\gamma \left|\frac{t}{n}\right|\right)$$

which corresponds to a $Cauchy(0, \gamma)$ for all n.

Exercise 2. Let $\{X_n\}$ be a sequence of random variables, such that $\mathbb{E}[X_n] = 0$ and $Var(X_n) \leq \sigma^2$ for all n, and such that $Cov(X_i, X_j) \to 0$ when $|i - j| \to \infty$. Then,

$$S_n = \frac{X_1 + \dots + X_n}{n} \xrightarrow{i.p.} 0.$$

Solution: For any $\epsilon > 0$, Chebyshev's inequality implies that

$$\mathbb{P}(|S_n| \ge \epsilon) \le \frac{Var(S_n)}{\epsilon^2} = \frac{1}{n^2 \epsilon^2} \sum_{i=1}^n \sum_{j=1}^n Cov(X_i, X_j).$$

Since $Cov(X_i,X_j) \to 0$ when $|i-j| \to \infty$, then for every $\delta > 0$, there exists N_δ such that $|Cov(X_i,X_j)| \le \delta$ for all i,j such that $|i-j| > N_\delta$. Thus, we have

$$\begin{split} \frac{1}{n^2\epsilon^2} \sum_{i=1}^n \sum_{j=1}^n Cov(X_i, X_j) &= \frac{1}{n^2\epsilon^2} \sum_{i=1}^n \left(\sum_{j: |i-j| \leq N_\delta} Cov(X_i, X_j) + \sum_{j: |i-j| > N_\delta} Cov(X_i, X_j) \right) \\ &\leq \frac{1}{n^2\epsilon^2} \sum_{i=1}^n \left(\sum_{j: |i-j| \leq N_\delta} \sigma^2 + \sum_{j: |i-j| > N_\delta} \delta \right) \\ &\leq \frac{1}{n^2\epsilon^2} \Big[n(2N_\delta + 1)\sigma^2 + n^2 \delta \Big] \\ &\leq \frac{2N_\delta + 1}{n\epsilon^2} + \frac{\delta}{\epsilon^2}. \end{split}$$

Taking limit as $n \to \infty$, we have

$$\lim_{n \to \infty} \mathbb{P}\left(|S_n| \ge \epsilon\right) \le \frac{\delta}{\epsilon^2}.$$

Finally, since this is true for all $\delta > 0$, we get

$$\lim_{n \to \infty} \mathbb{P}\left(|S_n| \ge \epsilon\right) = 0.$$

Exercise 3. Let $\{X_n\}$ be a sequence of i.i.d. random variables such that $X_1 \sim \mathcal{N}(0,1)$. Let us define $Y_k = X_1 + \cdots + X_k$. Show that

$$\frac{Y_1 + \dots + Y_n}{n^{3/2}} \stackrel{d}{\longrightarrow} \mathcal{N}(0, 1/3).$$

Solution: Let us define

$$S_n = \sum_{k=1}^n Y_k.$$

Note that

$$S_n = \sum_{k=1}^{n} (n - k + 1) X_k.$$

Then, we have

$$\phi_{S_n}(t) = \prod_{k=1}^n \phi_{X_k}(tk)$$

$$= \prod_{k=1}^n \exp\left(-\frac{(tk)^2}{2}\right)$$

$$= \exp\left(-\frac{t^2}{2}\sum_{k=1}^n k^2\right)$$

$$= \exp\left[-\frac{t^2}{2}\left(\frac{n^3}{3} + \frac{n^2}{2} + \frac{n}{6}\right)\right],$$

and thus

$$\phi_{\frac{S_n}{n^{3/2}}}(t) = \phi_{S_n} \left(\frac{t}{n^{3/2}} \right)$$

$$= \exp \left[-\frac{t^2}{2} \left(\frac{1}{3} + \frac{1}{2n} + \frac{1}{6n^2} \right) \right].$$

Finally, if $S = \lim_{n \to \infty} \frac{S_n}{n^{3/2}}$, we have

$$\begin{split} \phi_S(t) &= \lim_{n \to \infty} \phi_{\frac{S_n}{n^{3/2}}}(t) \\ &= \exp\left(-\frac{t^2}{6}\right), \end{split}$$

which corresponds to a $\mathcal{N}(0, 1/3)$.

MIT OpenCourseWare https://ocw.mit.edu

6.436J / 15.085J Fundamentals of Probability Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms