
1 

Taste the Rainbow? 

This morning I took out a little fun-size packet of Skittles, and found to my surprise that of 
the 16 skittles inside not a single one was green. (Skittles come in five flavors - green, yellow, 
orange, red, purple - and we’re going to assume that each skittle is i.i.d. assigned one of these 
with uniform probability. Incidentally, this story is 100% true.) 

This surprised me, so I wondered – what is the probability of getting such a packet, where some 
flavor is missing? (I assumed that all packets have 16 skittles.) Well, for any given flavor (say, 
green), the probability that a skittle is not that flavor is 4/5, and there are 16 in a packet, so 

P[packet contains no green] = (4/5)16

But I’m not interested in just “no green” – I want to know what the probability of missing any 
flavor is. This is upper-bounded by using the Union Bound over the 5 flavors, giving 

P[packet is missing a flavor] ≤ 5 · (4/5)16

This is actually a fairly close bound, because it’s only due to the possibility that two flavors might 
be missing which makes it a bound and not an equality. But missing two flavors is phenomenally 
unlikely – and from Problem 2 on the midterm we know that 

P[packet is missing a flavor] ≥ 5 · (4/5)16 − 

We can then give both upper- and lower-bounds: 

This is really surprising! This means that if everything is uniform and independent, roughly 
one out of every seven packs is missing a flavor. Incidentally, the probability of there being a 
missing-flavor packet out of five random packets is 

P[at least one is missing a flavor] = 1 − P[no packet is missing a flavor] ≥ 1 − (0.86)5 ≈ 0.53 

This means you have a slightly better than 1/2 chance of getting such a pack in a group of five. 

I feel like there’s a fortune in bet winnings just waiting here. 
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(3/5)16 ≤ P[packet is missing a flavor] ≤ 5 · (4/5)16 ≈ 0.14
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Characteristic Functions 

First things first – make sure you are comfortable with (a) complex numbers in general, and (b) 
it especially with expressions of the form e , notably the Euler formula 

it e = cos(t) + i sin(t) (note that this has L2-norm of 1) 

it+s (and its extension e = es(cos(t) + i sin(t))). 

Limitations of the MGF, and how to get around them 

The MGF is a very useful tool, but it has the notable limitation of sometimes not existing. For 
instance, consider the Cauchy distribution: 

Definition 0.1. The Cauchy distribution of location µ and scale γ is the continuous distri-
bution on R with PDF 

This happens to have CDF of the form 

This is often called pathological because its expectation is not defined. Furthermore, the MGF 
is defined nowhere (except at s = 0) – we can show this by simply attempting to compute 

For any s 6= 0, we have the following for suÿciently big positive x or big negative x: 

γ 

This immediately implies that the integral is infinite because it is > 1 on infinitely large measure. 

sX So if we can’t use the MGF on Cauchy, what can we do? Use eitX instead of e – the expression 
itXe is always of L2-norm 1 because itX has no real part. We therefore define: 

Definition 0.2. The characteristic function of a real-valued random variable X is a function 
φX : R → C given by 

φX (t) := E[e it] 

Because it has L2-norm of 1 everywhere, both the real and imaginary components of eitX are 
absolutely bounded by 1 – and therefore by the Bounded Convergence Theorem, the expectation 
exists and is finite. Even more, we know that φX (t) is always within the unit circle around 0 in 
the complex plane. 

fX(x) =
1

πγ
(
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x−x0
γ
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π
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Why is the characteristic function useful? 

If you’ve seen Fourier analysis, you might recognize the characteristic function as being super 
similar to the Fourier transform (but without the −2π constant term in the exponent). Further-
more, we’ll use without proof here the following facts (Yury will probably cover them sometime): 

Proposition 0.1. X, Y have the same distribution ⇐⇒ φX = φY everywhere. 

(Note: it is possible for the characteristic functions of di˙erent random variables to agree on an 
interval containing 0, but somehow disagree elsewhere. However, I don’t know any examples and 
they won’t be discussed here.) 

Theorem 0.1 (Levy’s Continuity Theorem). If X1, X2, . . . and X are random variables, 
and φXn → φX (pointwise) everywhere, then X1, X2, · · · → X in distribution. 

This makes it a very powerful tool for this sort of thing. 

We’ll also use the following, which can be proved in the same manner as for MGFs: 

Proposition 0.2. The characteristic function satisfies the following properties: 

itbφX (at). • If a, b are real numbers, φaX+b(t) = e 

• If X, Y are independent random variables, φX+Y (t) = φX (t) φY (t).

Proof. For the first, we just write 

it(aX+b)] = E[e itb it(aX)] = e itbE[e i(at)X ] = e itbφX (at) φaX+b(t) = E[e e 

itX itY For the second, we use the fact that X, Y independent =⇒ e , e independent. Then: 

it(X+Y ] = E[e itX itY ] = E[e itX ] E[e itY ] = φX (t) φY (t) φX+Y (t) = E[e e 

concluding the proof. 

Some quick problems using the CF 

Problem 0.1. Prove that the sum of two Cauchy’s is also Cauchy. 

The CF of the Cauchy distribution fX(x) = 1

πγ
(
1+
(
x−x0
γ

)2) happens to be φX(t) = eitx0−γ|t|.

This is quite difficult to actually compute without complex analysis tools, but we’ll use it. The
rest is simple: let X,Y have parameters x0, γX and y0, γY . Then

φX+Y (t) = φX(t)φY (t) = eitx0−γX |t| eity0−γY |t| = eit(x0+y0)−(γX+γY )|t|

which is also the CF of a Cauchy (with parameters x0 + y0 and γX + γY ).
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Problem 0.2. Use characteristic functions to show that average of n i.i.d. Ber(p) converges 
to a constant (equal to the probability p) as n →∞. 

We consider Xk ∼ Ber(p) (i.i.d.), and Sn = 1
n

∑n
k=1Xk. The CF of Xk is

φXk(t) = E[eitXk ] = (1− p) + peit

Furthermore, adding independent random variables multiplies CFs (same as MGFs), giving

φSn(t) = φ∑
k
n
=1Xk

(t/n) = (1− p) + peit/n =
( )n (

1 + p(eit/n − 1)
)n

Note that as n→∞, we have it/n→ 0 – so we’ll take the first-order Taylor expansion at 0:

eit/n = 1 + it/n+O(n−2) =⇒ (eit/n − 1) = it/n+O(n−2)

(Why the first-order? Because the O(n−2) term is too small to affect the result in the limit, even
with the outer power-of-n.) This gives

lim
n→∞

1 + p(eit/n − 1)
)n

= lim
n→∞

( (
1 + (itp)/n)n = eitp

But we can easily recognize that eitp is just the CF of the distribution which returns p with
probability 1. Therefore, the Sn’s converge (in distribution) to that distribution.
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Problem-solving about the MGF 

Problem 0.3. Suppose that we know that 

We want to show that the MGF MX (s) < ∞ for all s ∈ [0, t). 

Note that esX is actually nonnegative. This is very useful because we can now use that nice little 
formula of computing the expectation of a nonnegative variable using P[X > x]: 

sx This is good, so far, but we really want P[X > x] – so we’ll rewrite y = e . Note that because 
sx sX sx e is (strictly) monotonically increasing, e > e ⇐⇒ X > x. The transformation takes y 
on (0, ∞) to x on (−∞, ∞), and dy = s esx dx, giving 

Note the intuition here (warning - not rigorous!): 

(taking advantage of the fact that for x ≤ 0, we have esxP[X > x] ≤ 1). 

How do we make this rigorous? Use an ε. 

really means that for all ε > 0, we have some xε such that 

(−t+ε)x This condition is equivalent to P[X > x] ≤ e for all x > xε. Now let us fix s ∈ [0, t) and 
ε < t − s. Now we split the integral:

The integral on the left is finite, as it decays exponentially going to −∞ and is bounded above 
sxε by e . The integral on the right is then upper-bounded by our result for P[X > x], yielding in 

total (for some constant C) 

because, of course, we chose ε > 0 such that s − t + ε < 0. 

lim sup
x→∞

log
(
P[X > x]

)
x

= −t < 0

E[esX ] =
∫ ∞
0

P[esX > y] dy

E[esX ] = s

∫ ∞
−∞

esx P[X > x] dx

log
(
P[X > x]

)
x

≤ −t =⇒ P[X > t] ≤ e−tx

=⇒ s

∫ ∞
−∞

esx P[X > x] dx ≤ s+ s

∫ ∞
0

e(s−t)x dx <∞

lim sup
x→∞

log
(
P[X > x]

)
x

= −t

log
(
P[X > x]

)
x

≤ −t+ ε for all x > xε

E[esX ] = s

∫ ∞
−∞

esx P[X > x] dx = s

∫ xε

−∞
esx P[X > x] dx+ s

∫ ∞
xε

esx P[X > x] dx

E[esX ] ≤ C + s

∫ ∞
xε

e(s−t+ε)x dx <∞



 

6 

Multivariate normal - conditional expectation 

Problem 0.4. Suppose that Y1, Y2, . . . , Yn are i.i.d. ∼ N (0, 1); let X1, . . . , Xn be linear 
combinations of these 

What is the conditional expectation E[Xj |Xk]? 

Note that all the normals discussed here have expectation 0, which simplifies things. We have 
the formula (Theorem 1 in Lecture 14 notes) 

E[Xj |Xk] = µXj + VXj Xk V −1 (Xk − µXk ) = VXj Xk V −1 Xk Xk Xk XkXk 

where VZ1Z2 = Cov(Z1, Z2). The zero means also make the covariance calculations simpler: 

VXj Xk = E[Xj Xk] and VXkXk = E[XkXk] 

Note that if we have Yi1 , Yi2 (for i1 =6 i2) which are therefore independent, we get 

E[Yi1 Yi2 ] = E[Yi1 ] E[Yi2 ] = 0 and E[YiYi] = Var(Yi) = 1 

(by definition since Yi ∼ N (0, 1)). 

Now we note the following, and use linearity of expectation: 

Note that the above holds also if j = k. Therefore, 

Plugging back in, we get 

Xj =
∑n
r=1

Cj,rYr for some constants Cj,r

[∑
E[XjXk] = E

r,s

Cj,rCk,sYrYs

]
=
∑
r,s

Cj,rCk,sE[YrYs] =
∑
r

Cj,rCk,r

VXjXk =
∑
r

Cj,rCk,r and VXkXk =
∑
r

C2
k,r

E[Xj |Xk] = VXjXkVX
−
k

1
Xk
Xk =

(∑
r∑Cj,r

2

Ck,r

r Ck,r

)
Xk
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