The Jacobian Formula: functions are linear if you look really close

Notational remark: The bolded variables are either matrices or vectors; I like to do that to
visually remind myself what is what exactly. This will be a little confusing because usually
bolded uppercase letters are matrices, lower case are vectors, but here I'm also adding random
vectors as bolded upper-case letters. Also, | - |, when applied to a matrix, is the absolute value
of the determinant.

The multivariate derived-distribution problem is set up as follows: X = (X,..., X)) are jointly
continuous with density function fx over R™. We also have a measurable function g : R® — R"
and we define the random variable Y = g(X). Our goal is to find a good means of finding the
distribution of Y in terms of the distribution of X.

In particular, we will make an assumption about g which is “well-behaved” in a few ways — and
allows us to use the Jacobian formula. We will assume the following:

Assumption 0.1. Let U C R™ be an open set, and let g : U — R"™ be
e continuously differentiable
e an injection; and

e has non-vanishing determinant of the Jacobian, i.e. g—i # 0.

We also have the following fact, which is super useful:

Fact 0.1. Define V as the image g(U). Then if g : U — V satisfies the assumption: (i) V
is open; (ii) g7! : V — U is well-defined; (iii) g~! satisfies the assumption as well.

Let us define J(y) to be the Jacobian (first-derivative, basically) of g=! at y. Basically, around

any point y, we consider a tiny cube A of volume §" and note that the probability mass inside
came from the parallelepiped B = g~!(A) ~ J(y)A. The volume of it is then = |J(y)|d" (linear
algebra fact), and the density inside is approximately fx(¢~'(y)). Thus, the mass (~ Y) inside
A should be equal to the mass (~ X)) in B, giving:

fy(y) - 8" = fx(97 (y)) - [T (y)|o"

Dividing both sides by 6™ and then taking 6 \, 0 (which turns the ~ into =), we get the actual
Jacobian formula:
)|
For convenience, we will also be using the matrix M := g—i(g_l(y)) (forward Jacobian of g
‘ —

Fy(y) = Ix(g" () I (y
measured at = g~ !(y)). We will use the fact that |J(y)| = |[M|L.



An innocent little problem using the Jacobian formula

Problem 0.1. Let X = (X1, X3) be jointly continuous with PDF fx(x1,x9) = exp(—x1 —
x9) for 1,29 >0, and let

Y = (¥1,Y2) = (X1 + X2, X1.X3)
We want to know: (a) what is the joint PDF of Y, and (b) are Y1,Ys independent?

Well, to (b) we can already answer “no” because if Yo > 100, then Y; has to be bigger than 1
and that basically settles it.

(Formally, we say P[(Ya > 100) N (Y; < 1)] = 0 # P[Y3 > 100] - P[Y; < 1])

But let’s do this in the principled way.

First, we have an issue that g is not one-to-one (note that g(x1,x2) = g(xe2,x1)); we will solve
this by means of order statistics. We can assume that z1 # x2 because {x : x1 = z2} has
Lebesgue measure 0. Define:

Zl = min(Xl,XQ) and Z2 = maX(Xl,Xg)
From the order-statistics problem in the homework, we know that the PDF fz is

2exp(—2z1 — 22) if0< 2 <2

fz(z1,22) = {

0 otherwise

Note here that our set U C R? is now
U={z:0<2 < 22}

which is indeed open, and ¢ remains the same and is therefore still continuously differentiable.
Finally, if we look at the Jacobian of g, we find that

dg [ 1 1 } dg
= = and so == = 29— 21
0z 2z 2 z

whose determinant is not 0 since zo # z7.

Ok, let’s take a deep breath and remind ourselves of the Jacobian formula:

fr) = fz(g7 () I (y)|

(hidden is a 1y (y) term, i.e. this only works on the range of g). We'll need to find these two
parts, fz(g~'(y)) and |J(y)|.

The Density at the Inverse: This luckily turns out to be quite easy, since by definition z1+29 = y1
when y = g(z). Therefore, the density can just be computed:

fz(g~ () = 2exp(—y1)




The Determinant: For this, we gotta look at ¢g~!. Given gy, what is 2? Well, solving gives

y2 = 21(y1 — 21) = 22(y1 — 22)

which can be solved quadratically. zo is the max, so

Y1 — Vi — 4ys

z1 = 5 and 29 =

1+ VYE— 4y
2

As a bit of a sanity check, let’s look at y? — 4ys, and hope that it’s positive. We know
y% —dyy = (x1 + x2)2 — 4x1x9 > 0 because it’s the square of AM-GM

So our receiving set V' is just
V= {y:yi —4y2 > 0}

Alright, enough putting it off: what about the Jacobian J(y) of g~'? To make things super-
simple, however, note that we already have the determinant of the matrix M, which is z1 — 2o
(the absolute value of det(M) (at z) is zo — z1); and we know z; and 29 in terms of y; and ys.
Thus, we get

— 2 -4 Vg —4 o
det(M) =21 — 22 = yl yl y2 — y1+ gl y2 = y%—4y2

2

and therefore .

N

Now, we take the absolute value of this to get what we needed:

det(J(y)) = det(M) ! = —

1

vV y% — 4y

I (y)| =

Finally, we can put everything together that we needed — not forgetting the term that we hid
(indicator of V') — to get

_ 2exp(-y)
= e —4ys>0
N {yi—4y2>0}

4

fy () = fzlg~ () |J(y)| 1v(y)

As an afterthought, we get part (b) — are they indepedent? — is “no” (as we already knew)
because this PDF does not factor nicely into a y; term and a ys term.



Conditional probability example

Problem 0.2. Alice sends a bit to Bob; this is some X € {—1,1}, and the probability of
X =—1 or1 is1/2 for each. However, the communication channel is noisy - in particular,
it introduces some Gaussian noise N ~ N(0,1) (which is independent from the transmitted
bit). Bob then receives Y = X + N, and wants to remove the noise and recover the original
bit.

Bob finds that Y =y, for some y € R. Compute the probability P[X =1|Y = y].

This is a problem about conditioning with probability densities. Let fy|x be the conditional
density of Y given X, and let fy be the marginal density of Y. In this problem we want something
of the form P[X|Y] but are really given things of the form P[Y|X] (and P[X]) — so a natural
approach is to use Bayes’ formula.

Defining px to be the probability mass function of X, we get
px(1)- fY|X(y 1)
fy(y)

Note that because the noise is N (0,1) (and independent of X), note that Y ~ N(X,1) for
whatever X is. Therefore, the density

PIX=1|Y =y] =

fY\X(y’x) = NG

Furthermore, fy is built as an average of these (recalling that X can only take two values):

T I IRt L _win? en?
2

() =Y px(@) - fupxly|2) = V2 Vo __Lle

2 \ 2 2

because px(z) = 1/2 for z = —1, 1. Plugging in all of these into the formula above yields (after
a bunch of cancellations with the 1/2 and the 1/+/2m):

=12
MX—UY—]_WQWHWMD_ e o
- e fy(y) S wiy? _w=02 T -y ey
e 2 +e 2

241
(the last step is just an algebraic simplification, cancelling out the e=*2~ on the top and bottom).

Notably, this function has the following natural properties for this problem (sanity check):
o limy,  PX=1|Y=y]=0andlim, o cPIX=1|Y =y]=1.
e P[X =1|Y = y] is (strictly) monotonically increasing.

e PIX=1|Y =0]=1/2



Borel-Cantelli example

Problem 0.3. Suppose we have a sequence of nonnegative random variables X,, (not neces-
sarily independent) such that for any constant ¢ > 0, the following holds:

1
0<PX, >< =
We want to show the following two things:

e (a) For any constant b > 0, there is 0 probability that limsup,,_, ., 3= > b.

n

o (b) With probability 1, lim,,_ o % =0.

For part (a), this is all about getting the thing we want to prove into a format where we can
hit it with the given inequality. Furthermore, recall that lim sup is basically an “infinitely often”
thing, which suggests that we might want to apply Borel-Cantelli. This means:

X X

limsup — > b < {—n >b i.o.}
n—oo N n

(CAUTIONI! Need to be careful about the inequalities - if it’s > it becomes more complicated, see

Grading Notes 1 and 3.) Furthermore, we can re-write it to make the given inequality applicable.

Define:

Ay, = {w : Xnn(w) > b} ={w: Xp(w) > bn

Then, applying the inequality, we get

Therefore, summing up these probabilities gives, for any b > 0,
1 72
2Pl =D s = g <

Therefore, we can apply Borel-Cantelli to conclude that limsup,,_, . Xn > b has probability 0.

n

For part (b), there are two options available (both basically the same concept). First, note that
because X, is nonnegative, we know that 0 < liminf, ,. X,, < limsup,,_,,, X,. Therefore,
if limsup,,_,.o X, = 0, we know that limsup,_,., X;, = 0 = liminf, ,, X,,, and therefore
lim,, o X, exists and is 0. Thus,

X X
lim =2 =0 < limsup—= =0
n—oo N n—oo N

So now we really need to write “limsup,,_, ., X,, = 0” (as an event) in terms of events we already
have - and a countable number of them too. Defining

C:= {w : lim sup anfw) = 0} and Cf := {w : lim sup

3
n— 00 n— 00 n k



We then just see that (by the union bound, and part (a))
C=()Cr = C°=JCf = PIC] <) PICY]
k k k
:20:0 = P[C]=1-P[C]=1
k

Alternately, it can be observed that Cy \, C, and P[C%] = 1 for all k; therefore, by continuity of
probability we can conclude that P[C] = limy_,o, P[Cy] = 1.
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