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1 Sum of independent random variables
Lemma 1. If X and Y are independent random variables, then
P(X+Y <z)=E[Fx(z-Y)] =E[Fy(z — X)].
Proof. We have
P(X +Y <2) =E[l{xiy<z]
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where in the third inequality we used Fubini’s Theorem. O

If X and Y are continuous, X + Y is also continuous, and its density can be derived by
differentiating the above expression, and using Exercise 7 of HW 5 to bring the differentiation
inside the integral.

2 Gaussian, Gamma, and Exponential distributions

Theorem 1.
(a) If Ny ~ N(u1,0%) and Ny ~ N(ug,03), then Ny + Ny ~ N (1 + pz, 0% + o3).
(b) If G1 ~ Gammal(k1,0) and Gy ~ Gamma(ks,0), then G + G2 ~ Gamma(ky + ka, 0).
(c) If N ~ N(0,1), then N* ~ Gamma(1/2,2)
(d) If X,Y ~ N(0,1), then X? +Y? ~ Exp(2).

(e) If X, Y ~ N(0,1), then v X2+ Y? and arcsin(Y /v X? 4+ Y ?) are independent. Further-
more, arcsin(Y /v X? + Y?) is uniform over (—7 /2,7 /2).

Proof.  (a) It follows from applying the convolution formula for continuous random variables,
and doing lots of algebra. The whole thing is even in Wikipedia:
https://en.wikipedia.org/wiki/Sum of normally distributed random

variables


https://en.wikipedia.org/wiki/Sum_of_normally_distributed_random_variables

(b) It also follows from applying the convolution formula, and doing some algebra. For the sake
of simplicity, we prove it for the case 6 = 1.
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(c) We have
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Then, differentiating with respect to z, we obtain
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which is the density of a Gamma(1/2,2).

(d) From (c), we know that X2 and Y? are Gamma(1/2,2). Then, applying (b) we get that
X2 +Y?is Gamma(1,2), which is the same as Exp(2).

(e) Note that R = vV X2 +Y? and © = arcsin(Y/v X2 + Y?2) correspond to the radius and
angle in polar coordinates. As a result, the probability of the event {0 < © < Oy}N{R < ro}
can be computed using polar coordinates as follows:
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Thus, they are independent, and © is uniform.
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