
    

   
   

 
 

            
          

  

 

  

 

  

       

   

        
  

   
 

          

 

            
             

           
           

 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 
6.436/15.085 Lecture 25 
Lecturer: Yury Polyanskiy Scribe: MIT Class Participants 

Disclaimer: These notes have not been subjected to the usual scrutiny reserved 
for formal publications. They are posted to serve class purposes. 

MARTINGALES I 

Content. 

0. Background

1. Martingales: definition, examples

2. Azuma-Hoeffding Inequality

3. Optional stopping theorem

0 BACKGROUND

• Recall we defined conditional expectation V = E[A|X] as follows:

→B = f (X), E[AB] = E[V B]

We also learned that one computes conditional expectations, usually,  by
integrating 

! 
E[A|X = x] =  aPA|X (da|x)

R 

• We can also define conditional expectation with respect to a sigma-algebra
F :

V = E[A|F ]

Namely, random variable V is a conditional expectation of A given F if
a) V ∈ F and b) →B ∈ F , E[AB] =  E[V B]. Here  we  used  common
abuse of notation V ∈ F meaning “V is F-measurable” (which, recall,
means {V ≤ v} ∈ F for every v ∈ R. 
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C• Recall σ(X0,X1, ...,Xk) Fk where Fk is the smallest σ-algebra con-
taining all events {Xi ≤ a}. Recall  also  that  

A ∈ F∥ ⇐⇒ ∃ f : A = f(X0, ...,Xk ) (1) 

Given a stochastic process X0,X1, ...  

Fk = σ(X0,X1, ...,Xk),F0 ⊂ F1 ⊂ ... ⊂ F∞

where F∞ = σ(Xi, i  ∈ Z+). The  Fk we have defined here is known as
the standard filtration generated by the stochastic process. We can think 
about each Fk as the valid questions you can ask (and answer) if you only
know realization of the stochastic process up to time k. 

• Before we were talking about a stochastic process in isolation. Now we
will talk about stochastic process being adapted to some filtration Fk. For
simplicity, you can always think of a standard filtration generated by a
mother (complicated) random process {Xk}. We  say  that  Yk is a stochas-
tic process adapted to filtration Fk if Yk ∈ Fk holds → k ≥ 0. 
As an example, we can look at a simple process Yk = sign(X0 +...+Xk ).
Note that Yk ∈ Fk, i.e.  Yk is Fk-measurable, because it is a function of
X0, ...Xk . However,  knowledge  of  Y0, . . . , Yk is insufficient to recon-
struct trajectory X0, . . . ,Xk . So  while  Yk is adapted to Fk, the  filtration
Fk is much richer. This is a common situation in applications (since we
are interested in functions of the mother process), and that’s why we need 
the concept of filtration.

1 MARTINGALES

1.1 Definition 

We introduce our main definition of a Martingale: 

Definition 1. A process  (Mt, t  = 0, ...,∞ ) is a martingale with respect to
filtration F0 ⊂ F1 ⊂ ... if: 

1. Mt ∈ Ft → t ≥ 0

2. E|Mt| < ∞ , i.e.  Mt is integrable

3. E[Mt|Ft−1] = Mt−1 
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In the special case if Ft = σ(M0, ...,Mt) we simply say “Mt is a mar-
tingale” (without mentioning filtration). In this case, the property 1) is au-
tomatic and being a martingale becomes essentially just the requirement that 
E[Mt|M0, ...,Mt−1] = Mt−1, for all t ≥ 1. 

1.2 History of Martingales 

The word martingale comes from gambling. It describes a strategy in which a 
gambler makes a series of bets. For each bet, he wins if a coin lands on heads 
and loses if the coin lands on tails. For each successive loss, he  doubles  his  bet,  
starting with $1 on the first flip. At the time of winning (i.e. first time the coin 
lands on heads), the gambler will receive a net gain of $1 2t+1 − (1+ 2+ ...+ 
2t) = 1; however the  expected  loss  at  the  time  of  winning  is  ∞. 

1.3 Examples 

For the following examples of martingales, we introduce the notation 

Et[·] := E[·|Ft] 

Example 1. Sn = X0 + ... + Xn for Xi independent and E[Xi] = 0. Fk = 
σ(X0, ...,Xk ). Then,  we  have  En−1Sn = Sn−1. 

Example 2. Yn = X0 · X1 · ... · Xn for Xi independent and E[Xi] = 1. Then,  
we have En−1Yn = Yn−1. 

Example 3 (Doob Martingale). Let Z be any random variable with finite expec-

tation (E|Z| < ∞) and  Ft be any filtration. We define a Doob martingale: 

Mt = E[Z|Ft] (2) 

This make look like a rather special case, but it will turn out that many mar-

tingales we work with will turn out to be of this type. Think of it as if we have 
a ”secret”  Z and we are observing its average given the known information at 
time n. Over  time,  we  learn  more  and  more  about  this  mother  random  variable, 
and approach knowing Z itself. A Doob martingale has the martingale property 
with respect to the given filtration: 

Et−1Mt = E[Mt|X0, ...,Xt−1] 
= E[E[Z|X0, ...,Xt]|X0, ...Xt−1] 
= E[Z|X0, ...,Xt−1] 
= Mt−1 

where in the second line, we use the tower property of conditional expectation. 
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As we will see below, Examples 1 and 2 are not Doob martingales unless 
they converge. We can, however, modify examples 1 and 2 so that they  are  Doob
martingales. Suppose we restrict the martingales to within a certain  window,  for
instance Sn for n such that −100 ≤ Sn ≤ 100, and  freeze  the  process  once  it
exceeds the boundary. Then, the martingales are Doob martingales (since they 
ar bounded!). 

2 AZUMA’S INEQUALITY

By performing a simple computation and induction, we can see that EMt = 
EM0: 

E[Mt] =  E[Et−1[Mt]] 
= E[Mt−1] 

To compute the variance of Mt, assume  without  loss  of  generality  that
E[M ] = 0. 

var(Mt) =  EM2 (3) t 

= E[Mt − Mt−1 + Mt−1]
2 (4) 

= E[Et−1[(Mt − Mt−1)
2 + Mt 

2 
−1 + 2Mt−1(Mt − Mt−1)]] (5)

= E[Mt 
2 
−1] +  E[Mt − Mt−1]

2 (6)

E[Ms − Ms−1]
2 + var(M0) (7) 

We obtain (5) by using the tower property of conditional expectation and we use 
the following simplification to obtain (6): 

Et−1[Mt−1(Mt − Mt−1)] = Mt−1(E[Mt − Mt−1]) = 0

Finally, we obtain (7) by induction. 
2 From this derivation, we can see that |Ms − Ms−1| ≤ c ⇒ varMt ≤ c t.

Martingales with bounded increments (within a constant c) grow with speed √ 
∼ t. This  leads  us  to  the  Azuma-Hoeffding  inequality.
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Theorem 1 (Azuma-Hoeffding Inequality). If Mt is a martingale with |Mt −
Mt−1| ≤ ct a.s. →t, then  

−h2 
P(Mt − E[Mt] > h) ≤ exp 

2 t 
s=1 cs 

2 

Proof. From Chernoff bound, we have P[·] ≤ e−λh+ψt(λ) →λ > 0 where ψt(λ) =
lnE[eλMt ] is the log MGF. Without loss of generality, we are assuming EM = 
0. 

2λ2c 
It is sufficient to prove that ψt(λ) ≤ ψt−1(λ) + t . 2 
We can rewrite the following expression: 

λMt λ(Mt−Mt−1) λMt−1Et−1e = Et−1e e 

→|x| ≤ ct:
λct −λct )(e − e −λct e λx ≤ e + (x+ ct) 

2ct
Plugging in x = Mt − Mt−1.

−λct λcte + e λ(Mt−Mt−1) ≤Et−1e 
2 

because Et−1(Mt − Mt−1) = 0. Finally,  using  the  fact  that

p 2e−p + e p 
≤ e 2 ,

2 

which can be checked using Matlab/Python, and substituting p = λct, we get 

e + e 2
t 
2−λct λct λ c 

λ(Mt−Mt−1) ≤Et−1e ≤ e 2

2 

Example 4. Suppose we throw M balls into n bins. Let V be the number of 
occupied bins. Let us define a process: 

(8) 

where Xi is the bin selected by the ith ball. We can see that this process is a 
Doob martingale becase we are conditioning on increasing σ-algebras. Intu-

itively, we can see that at any step of the process, the conditional expectation 
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will not change by more than 1: |Mt − Mt−1| ≤ 1. Thus,  we  have  by  Azuma-

Hoeffding: 
−h2

P[|V − EV | > h] ≤ e 2M

This example demonstrates that, even if the exact mean is unknown, we can al-

ready guarantee that the distribution of V concentrates sharply around its mean. 
So all complexity of understanding V boils down to computing its expectation 
(which, in turn, can be done by sampling a few realizations, thanks to the con-

centration phenomenon). 

3 OPTIONAL  STOPPING  THEOREM

Recall the following definition of the stopping time of a filtration: 

Definition 2. τ : Ω → Z+ ∪ {+∞ } is a stopping time of filtration F0 ⊂
F1 ⊂ ... if 

{τ ≤ n} ∈ Fn → n ⇐⇒ {τ = n} ∈ Fn → n

Now, using the notation a ∧ b = min(a, b), let  us  define  Yt = Mτ ∧t. Think
of this as a process that has values Mt until time τ and then has constant value 
Mτ . We  are  essentially  defining  a  new  process  that  follows  the  trajectory of Mt

but then freezes once it reaches τ . For  instance,  we  could  define  τ = inf{t :
|Mt| ≥ 100}. 

Theorem 2. Yt = Mτ ∧t is a martingale for any martingale Mt and stopping 
time τ . 

Proof. 

Mr1{τ = r} + Mt1{τ ≥ t}

t−1 Note that {τ ≥ t} = {τ ≤ t − 1}c ∈ Ft−1, so Et−1 Mt1{τ = r} =r=0 
t−1 = r}. Substituting this, we get r=0 Mt1{τ 
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t−1 

Et−1Yt = Mt1{τ = r} + (Et−1Mt)1{τ ≥ t}
r=0 
t−1 

= Mt1{τ = r} + Mt−11{τ ≥ t}
r=0 

= M(t−1)∧τ

where the equation from the first to the second line follows from Et−1Mt = 
Mt−1. We  are  done  with  the  proof.  

This relates to the efficient market hypothesis: the price of a stock  should
be a martingale (with respect to filtration generated by all public information). 
Indeed, in this case defining a smart stopping time one is unable to improve the 
average price still. 

Now we return to the idea of uniform integrability and introduce the crucial 
concept of a uniformly integrable martingale (uim). First  we  consider  a  very
useful and simple criterion for getting a wealth of uims. 

Proof. 

t 

|Yt − Y0| ≤ |Ys − Ys−1|
s=1 
t 

= |Ms −Ms−1|1{τ ≥ s}
s=1 
∞ 

≤ |Ms −Ms−1|1{τ ≥ s} =: W
s=1 

The conditions imply 

EW < ∞ ⇒ |Yt| ≤ W + |Y0| →t
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Proposition 1. Let Mt be a martingale, τ be a stopping time such that Eτ <

∞, and Et−1|Mt − Mt−1| ≤ c a.s., then Yt , Mt∧τ is a uniformly

integrable Martingale.
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We will see in the next lecture that every u.i.m. ⇐⇒ Doob Martingale. In
particular, every bounded martingale is Doob. For now we state the crown jewel 
of martingale theory: 

Theorem 3 (Optional stopping theorem). Let Mt be a uniformly integrable 
Martingale and let τ be a stopping time such that P[τ < ∞ ] = 1. Then:

EMτ = EM0 

Proof. We first prove a special case: Suppose τ ≤ L a.s. where L is some
constant. Then: 

L 

Mτ = Mt1{τ = t} (9) 
t=0 
L 

= (EtML)1{τ = t} (10) 
t=0 
L 

= EtML1{τ = t} (11) 
t=0 

The key insight to obtain (10) was to use the property of martingales from part 
3 of  the  definition.  Now,  we  can  take  the  expected  value  of  both  sides of (11): 

EMτ = EML1{τ = t} (12) 
t 

= EML (13) 
= EM0 (14) 

Note that (12) forms a partition because 1{τ = t} = 1 a.s.t 
Note that a similar argument shows 

E|Mτ | ≤ E|ML|

Indeed, one only needs to notice that |EtML| ≤ Et|ML|.
The general case follows in two steps. First define τL = τ ∧ L, then  by  the

previous argument we have 

E|MτL | ≤ supE|ML| < ∞ ,
L 
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where the last inequality follows from uniform integrability (which implies uni-
form boundedness). So since MτL → Mτ as L → ∞ almost surely, we have
via Fatou’s lemma 

E|Mτ | < ∞ .

Finally, 
Mτ = MτL + (Mτ −MτL )1{τ ≥ L}

By the first part of the proof E[MτL ] = E[M0]. So  we  only  need  to  show  that  as
L → ∞ the expectation of the second term vanishes.

Note that as L → ∞ we have P[τ ≥ L] → 0. Thus  E[|Mτ |1{τ ≥ L}] → 0.
Similarly, from uniform integrability of {ML} we have E[|MτL |1{τ ≥ L}] =
E[|ML|1{τ ≥ L}] → 0. This  completes  the  proof.  
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