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1 Markov chains with a single recurrence class

Recall the relations —, <+ introduced in the previous lecture for the class of
finite state Markov chains. Recall that we defined a state ¢ to be recurrent if
whenever ¢ — j we also have j — ¢, namely ¢ <+ j. We have observed that
<> is an equivalency relation, so that set of recurrent states is partitioned into

equivalency classes Ry, ..., R,. The remaining states 7 are transient.
Lemma 1. Forevery [ = 1,...,r and every i € R;,j ¢ R; we must have
pij = 0.

This means that once the chain is in some recurrent class R it stays there
forever.

Proof. The proof is simple: p; ; > 0 implies 7 — j. Since 4 is recurrent then
also 7 — ¢ implying j € R - contradiction. O

Introduce the following basic random quantities. Given states %, j let
T; = min{n > 1: X, =i| Xy =i}.

In case no such n exists, we set 7; = oo. Thus the range of T} is N U {oo}.
The quantity is called the the first passage time. Let u; = E[T;], possibly with
w; = oo. This is called mean recurrence time of the state :.



Lemma 2. For every state ¢ € 7, P(X,, = 4, i.0.) = 0. Namely, almost
surely, after some finite time ng, the chain will never return to . In addition
E[T;] =oc.

Proof. By definition there exists a state j such that ¢ — 7, but j - ¢. It then
follows that P(7; = oo) > 0 implying E[7;] = co. Now, let us establish the first
part.

Let I; ,,, be the indicator of the event that the M.c. returned to state 7 at least
m times. Notice that P(; ;) = P(T; < oo) < 1. Also by M.c. property we
have P(1; |I; m—1) = P(T; < 00), as conditioning that at some point the M.c.
returned to state ¢ m — 1 times does not impact its likelihood to return to this state
again. Also notice I; ,, C Ijm—1. Thus P(1; 1) = P(L; o | Li—1)P(Lim—1) =
P(T; < 00)P(I;p—1) = --- = P"(T; < 00). Since P(T; < oco) < 1, then by
continuity of probability property we obtain (M, 1; ) = limy,—00 P(Lim) =
limy,, 00 P™(T; < 00) = 0. Notice that the event N,,, 1; ,,, is precisely the event
X, =1, i.0. O

Exercise 1. Show that 7 % X. Namely, in every finite state M.c. there exists at
least one recurrent state.

Exercise 2. Leti € T and let 7 be an arbitrary stationary distribution. Establish
that m; = 0.

Exercise 3. Suppose M.c. has one recurrent class 2. Show that for every i € R
P(X,, =1, i.0.) = 1. Moreover, show that there exists 0 < ¢ < land C > 0
such that P(T; > t) < Cq' for all ¢ > 0. As a result, show that E[T;] < oco.

We now focus on the family of Markov chains with only one recurrent class.
Namely X = TUR. If in addition 7 = @, then such a M.c. is called irreducible.

2 Uniqueness of the stationary distribution

We now establish a fundamental result on M.c. with a single recurrence class.

Theorem 1. A finite state M.c. with a single recurrence class has a unique
stationary distribution 7, which is given as m; = ;% for all states ¢. Specifi-
cally, m; > 0 iff the state ¢ is recurrent.




Proof. Let P be the transition matrix of the chain. We let the state space be
X ={1,..., N}. We fix an arbitrary recurrent state k. We know that one exists
by Exercise 1. Assume Xy = k. Let NV; be the number of visits to state i between
two successive visits to state k. In case ¢ = k, the last visit is counted but the
initial is not. Namely, in the special case ¢ = k the number of visits is 1 with
probability one. Let p;(k) = E[N;]. Consider the event {X,, = i,T} > n} and
consider the indicator function 2@1 Ix,=iT,>n = Zlgnng Ix, —;. Notice
that this sum is precisely NV;. Namely,

pi(k) =Y P(X, =i,Tj, > n|Xo = k). (1)

n>1

Then using the formula E[Z] = > ., P(Z > n) for integer valued r.v., we
obtain -

sz'(k) = ZP(Tk > n|Xo = k) = E[T] = py. )

n>1

Since k is recurrent, then by Exercise 3, p; < oo implying p;(k) < co. We let
p(k) denote the vector with components p; (k).

Lemma 3. p(k) satisfies p? (k) = p (k) P. In particular, for every recurrent
state k, m; = %, 1 <4 < N defines a stationary distribution.

Proof. The second part follows from (2) and the fact that i < oco. Now we
prove the first part. We have for every n > 2

P(Xp =i, Tk = n|Xo =k) =Y P(Xp =i, Xp 1 =5,Tk > n|Xo = k)

ik
3)
=Y P(Xn1=4.Tx > n—1|Xo = k)pj; 4)
Gk

Observe that P(X = 4,7}, > 1|X¢ = k) = pi,;. We now sum the (3) over n
and apply it to (1) to obtain

pilk) = pri+ > > P(Xn1=5Te >n—1Xo = k)pjs
Ak n>2



We recognize ), <o P(X,—1 = j,Tx > n — 1|Xo = k) as p;j(k). Using
pr(k) = 1 we obtain

pi(k) = pe(k)pri + > pi(K)pji = Y pi(k)pj.
J#k j

which is in vector form precisely p (k) = p* (k)P. O

We now return to the proof of the theorem. Let 7w denote an arbitrary sta-
tionary distribution of our M.c. We know one exists by Lemma 3 and, indepen-
dently by our linear programming based proof. By Exercise 2 we already know
that m; = 1/u; = 0 for every transient state i.

We now show that in must be that 7, = 1/puy for every recurrent state k.
In particular, the stationary distribution is unique. Assume that at time zero we
start with distribution 7. Namely P(Xy = i) = m; for all i. Of course this
implies that P(X,, = ) is also ; for all n. On the other hand, fix any recurrent
state k and consider

= > P(T} > n|Xo = k)P(Xo = k)

n>1
=> P(T;, > n,Xo =k).
n>1

On the other hand P(T}, > 1, Xy = k) = P(Xy = k) and for n > 2

P(T, >n,Xo=k) =P(Xo =k, X; £k, 1<j<n—1)
:P(X]#k,lgjgn—l)—P(X]#k‘,OS]gn—l)
UPX; £k0<j<n—2)—B(X; #k0<j<n—1)
= anp—-2 — Qn-1,

where a,, = P(X; # k,0 < j < n) and (*) follows from stationarity of 7. Now

ap = P(Xo # k). Putting together, we obtain

e = P(Xo = k) + > (an—2 — an1)
n>2

= ]P)(XO = k) + ]P(Xo 75 k?) — lim Qp,

=1-lima,
n



But by continuity of probabilities lim,, a,, = P(X,, # k,Vn). By Exercise 3,
the state k, being recurrent is visited infinitely often with probability one. We
conclude that lim,, a,, = 0, which gives pxm, = 1, implying that 7 is uniquely
defined as 1/ . O

3 Ergodic theorem

Let N;(t) denote the number of times the state i is visited during the times
0,1,...,¢. What can be said about the behavior of N;(¢)/t when ¢ is large? The
answer turns out to be very simple: it is ;. These type of results are called
ergodic properties, as they show how the time average of the system, namely
N;(t)/t relates to the spatial average, namely ;.

Theorem 2. For arbitrary starting state Xy = k and for every state ¢,
N;(t
lim A = T
t—00 t
almost surely. Also
E[N;(t
lim 7[ i(t)] = ;.
t—00 t
Proof. Suppose Xo = k. If i is a transient state, then, as we have estab-

lished, almost surely after some finite time, the chain will never enter ¢, meaning
lim; N;(t)/t = 0 almost surely. Since also 7; = 0, then we have established the
required equality for the case when ¢ is a transient state.

Suppose now 1 is a recurrent state. Let 77, 75, T3, . . . denote the time of suc-
cessive visits to ¢. Then the sequence 71),,n > 2 is i.i.d. Also 77 is independent
from the rest of the sequence, although it distribution is different from the one of
Tm, m > 2 since we have started the chain from k which is in general different
from 4. By the definition of N;(¢) we have

Z T, <t< Z T,

1<m<N;(¢) 1<m <Ny (t)+1

from which we obtain

m<N; T t m<N; T Nz t 1
2 1<m<Ni(t) < - 2 1<m<Ni(t)+1 (')+ ' )

N;(t) — Ni(t) Ni(t) +1 N;i(t)



We know from Exercise 3 that E[T},,] < oo,m > 2. Using a similar ap-
proach it can be shown that E[T7] < oo, in particular 77 < oo a.s. Applying
SLLN we have that almost surely

T, T -1
i 22smsn T ZasmenTnn =1 g
n—o0 n n—00 n—1 n
which further implies
T, T T
i 2tsmsn T Zasmea Ty T = E[Ty)
n—o00 n n— 00 n n—oo n
almost surely. U

Since i is a recurrent state then by Exercise 3, N;(t) — oo almost surely as
t — oco. Combining the preceding identity with (5) we obtain

) t
B ATt
from which we obtain lim; N;(t)/t = p; ' = 7; almost surely.
To establish the convergence in expectation, notice that N;(t) < ¢ almost
surely, implying N;(t)/t < 1. Applying bounded convergence theorem, we
obtain that lim; E[N;(t)]/t = m;, and the proof is complete.

4 Markov chains with multiple recurrence classes

How does the theory extend to the case when the M.c. has several recurrence
classes Ry,...,R,;? The summary of the theory is as follows (the proofs are
very similar to the case of single recurrent class case and is omitted). It turns out
that such a M.c. chain possesses r stationary distributions = (77%, ey va), 1<
i < r, each “concentrating” on the class R;. Namely for each ¢ and each
state k ¢ R; we have mi = 0. The i-th stationary distribution is described
by w,i = 1/py, for all k € R; and where 1, is the mean return time from state
k € R; into itself. Intuitively, the stationary distribution 7 corresponds to the
case when the M.c. “lives” entirely in the class R;. One can prove that the fam-
ily of all of the stationary distributions of such a M.c. can be obtained by taking
all possible convex combinations of 7ri, 1 <% < r, but we omit the proof. (Ex-
ercise: show that a convex combination of stationary distributions is a stationary
distribution).
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