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Uniform integrability, convergence of series
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1 CONVERGENCEIN L,

Definition 1 (Convergence in mean). A sequence of integrable random varibles
X is said to converge in L1 to X (also known as “convergence in mean”),

denoted X s if
E[|X; — X[] =0 Jj—o00.
For p > 1 we define X; by x IfE[|X;P] < oo and E[|X; — X|P] — 0.
Some simple properties are given below:

Proposition 1. (i) X, hox implies E[| X|] < oc.

.. L . . i.p.

(ii) X; = X implies X; = X

L . . . . a.s.

(iii) X; 2 X does not imply and is not implied by X; = X.

(iv) The space of integrable random variables on (Q,F,P) modulo almost-
sure equivalence is a Banach space, denoted as L1(Q,F,P) with norm
| X|l1 £ E[|X|). Similarly for L,(Q, F,P).



Proof: (i) Follows from taking expectation in the triangle inequality:
[ X] < | Xp = X]+ | Xa] ()

(i1) and (iii) is an exercise. (iv) is outside the scope of this class. O

Our goal is to show the following the following (third!) variation of the
LLN:

Proposition 2 (L1-LLN). Let X; be iid random variables with finite expecta-
tion, then

1 & L
~=> X; B EX]
n-
7j=1
The proof of this proposition follows by Theorem 1 and Corollary 1 below.

2 UNIFORM INTEGRABILITY

Definition 2. A collection of random variables Xo, € S is uniformly inte-
grable if
k(b) = sup B[| Xo|1{|Xa| > 0}] = 0 b — occ. )
Some useful criteria for checking u.i.:
Proposition 3. The following hold:
(i) IfE[|X|] < oo then { X} is u.i.
(ii) When Xy < Y, then {X g}-u.i. iff {¥, }-ut.i.
(iii) {Xq}-ui. iff {Xy} is L1-bounded and uniformly continuous:
syp B[ Xl < o ®

supE[| X, [1g] =0 asP[E] =0 4)
a

(iv) If G : Ry — Ry is such that @ — 00 as t grows without bound" then

supE[G(|Xy|)] <00 = {X }-ui

!Some typical choices are G(t) = t2, |t|* "< and |t log t|.



v) If X, 2% X and E[|X,,|] — E[|X|] then {X,,} is u.i.

Proof: (i) follows from the MCT, (ii) is obvious from the definition, (v) is
part of the homework.

For (iii), first notice that E[|.X 4|] < k(b) + b for every b > 0 and thus (3)
holds. Similarly, notice that for every b:

E[|Xa[15] < E[[ X [1{[X,| > b}] + bP[E] < k(b) + bP[E]

and thus by taking P[E] — 0 and b — oo we prove (4). Conversely, if (3)
and (4) hold, but {X,} is not uniformly integrable then for some sequence ay,
and ¢y > 0 we have

E[| X, [1{1 X, | > B}] = 0 > 0 5)

On the other hand, by (3) and Markov inequality P[| X, | > k| — 0. Conse-
quently, (5) contradicts (4).
Finally, to see (iv) just notice that for every a > 0 there exists b > 0 such

that @ > a for all ¢ > b. Then,

G([Xy) = al X 1{[ X, > b}
and taking expectation here we obtain:
1
k(b) < —sup E[G([X )]
a o
from which (2) follows by taking a — oc. O
As a simple consequence of the Proposition we get:

Corollary 1. Let X be identically distributed (not necessarily independent!)

and integrable. Then collection of normalized sums {% Z;LZI Xj,n=1,.. }
is uniformly integrable.

Proof: Indeed, by Proposition 3(i) and (ii) we get that {X;,j = 1,...} is

uniformly integrable. Now defining Y, = 1 Z;LZI X we have

T n

sup E[[Yy[] < E[|X]] < oo

and on the other hand

supE[|Y,|1g] < supE[|X,|1g] = 0 asP[E] =0,
n n



where the last step follows by (4) applied to {X;}. Uniform integrability of
{Y;} then follows from Proposition 3 (iii). O

The main value of studying uniform integrability is the following:

Theorem 1. We have

X, Bx = X, Xand {X,)-ui

Proof: The = direction follows from Markov’s inequality and Proposi-
tion 3(iii). Indeed, by (1) we have the inequality

E[|Xn[15] < E[|X[1g] + E[| X5 — X[15] (©)

For very large n > ng the second term is smaller than € and hence

lim sup <supIEHXn\1E]> < e+lim sup (EHXHE] + max E[|X, — X]lE]>
PE]=0 \ n P[E]—0 1<n<ng

where the second term is zero by (4) because {| X/, | X1 — X/, ... | Xy, — X|}is
a uniformly integrable collection. Consequently, taking e — 0 we have shown

supE[X, 1] = 0 P[E] =0
n

Setting £ =  in (6) we verify (4). Thus Proposition 3(iii) implies that the
infinite collection { X, } is also u.i.

For the converse direction, we first notice that by characterization of conver-
gence in probability there must exist a subsequence X, 2% X. Then by Fatou’s
lemma and (3) we have

E[|X]] = E[limkinf | X0, 1] < limkinfEHXnk] < 00

Thus, the limit random variable is integrable and consequently (Exercise!) col-

lection of nonnegative random variables {Y;,,n = 1,...} isu.i. and Y}, R,
where

Y, & | X, — X|.
Then, we have for every ¢ > 0
E[Y,] = E[Y,1{Y,, > €}] + E[Y,1{Y,, < €}] (7)
< e+ E[Y,1{Y, > ¢€}]. (8)



Since Y,, 1—p> 0 we have P[Y;, > €] — 0. Then by (4) the second term converges
to zero as n — oo. Hence, for all ¢ > 0

limsupE[Y,] <,

n—oo

which shows Y, L% 0. O

As a corollary we obtain a result we assumed before (in proving that conver-
gence of characteristic functions implies convergence in distribution).

Corollary 2. Let f,,(x) — f(z) Vz € R be a pointwise convergent sequence
of pdfs. If Xy, ~ f, and X ~ f then X,, > X.

Proof. Let ¢(z) = S f(x) + 300, 27" f,(2). Itis clear that ¢(z) is another
pdf. Let (¢, F,P) be defined as 2= R, F = B,P(dz) = ¢(z)dzr and define
random variables Y,,(z) = f,(z)/¢(x). Note that as a consequence of our
definition of ¢ this ratio is well-defined almost everywhere: ¢(z) = 0 implies
fu(z) = 0and P({x : ¢(z) = 0}) = 0. Similarly, define Y (z) = f(x)/d(x).
We have Y,, 23 Y.

Furthermore, by construction E[|Y,|] = 1 = E[|Y|]. Thus, by Prop. 3(v)
the collection {Y},} is u.i.. Consequently, from the previous Theorem we have
E[Y,, — Y|] — 0. Rewriting this last statement explicitly, we have shown

/R]fn(x)—f(x)\dwﬁo n— 00. 9)

In particular, for any £ € B we have

Py, [E] = /E falz) = /E f(x) = Px|B],

and taking £ = (—o0, a] shows convergence of CDFs of X, to the CDF of X
at every point a.

(In fact, (9) is usually stated as “distribution of X,, converges to the distri-
bution of X in total-variation”. This is a stronger mode of convergence than
convergence in distribution.) O

3 SUMS OF INDEPENDENT RANDOM VARIABLES

A classical topic tightly related to the SLLN is convergence of sums
n
Sn=Y_X;
j=1

5



when X; are independent (and not identically distributed, of course). There is
a great deal results about properties of S, and here we will only mention a
core principle: Convergence behavior of S, its central moments, concentration
properties, etc are largely encoded in the behavior of Z;‘L:I var[X;].

We start with an example. Consider two independent sequences:

1 1
P[X, =+1]=—, P[X,=0=1-—, (10)
2n n
1 1
PY,=®=—]=-. 11
Ya=t]=2 1
First, we notice that E[|X,,|] = E[|Y,|] = 5, so that sum of first moments

diverges at the same speed. Furthermore, both series ) X, and )Y, do not
absolutely converge:

P [Z|Xn| = 400 > V| =400
n n

Indeed, for Y;, this is obvious as |Y,,| = %, while for X, it follows from Borel-
Cantelli that: P[| X,,| = 1-i.0] = 1.

So far, we see that > X, and ) Y,, behave quite similarly. However, as we
will see next it turns out that

P [Z X, converges] =0 Zvar[Xn] = 400 (12)

P

ZY" converges] =1 Zvar[Yn] < 400 (13)

The explanation of this phenomena is the following: While both series diverge
absolutely, the rapidly decreasing variances of terms in Y;, allows for “sign can-
cellation” effect to kick in making the series > Y;, converge (similar to conver-

gence of ) (_—:L)n).



Theorem 2 (Kolmogorov, Khintchine). Let X; be independent and

pEY EIX], |yl < oo, (14)
j=1

o £ “var[X;] < oo (15)
j=1

then

n

Sn=>_X,
j=1
2

converges almost surely and in Ly to a limit S with E[S]| = p, var[S] = o*.
Conversely, if | X;| < c for some constant ¢ and S, 2% S with real-
valued S, then conditions (14)-(15) hold.

Proof: We prove the direct part. Without loss of generality we assume
E[X,] = 0. As we have shown in the homework (Cauchy criterion of almost
sure convergence) it is sufficient to show that

Plsup |Sp4x — Sn| > €] =0 n— o0 (16)
E>1
Kolmogorov’s inequality (see Theorem following the proof) shows that
o
E[iup Sk = Sul*) <2 var[X;]. (17)
>1 -
By Chebyshev’s inequality we obtain then
2 o
]P’[iup [Snik = Snl > < 5 > var[X;] (18)
>1 "

Since sum of variances converges, the left-hand side of (18) decreases to 0 as
n — oo and thus (16) is shown. The proof of S,, £ S is complete.
Notice that (17) with n. = 0 shows that “life-time maximum”

My = sup|Sy|
n>1

has finite second moment. Since

|Sp — S| <2My,



by the DCT it follows that
E[|S, —SI)] =0

and similarly for E[S,,] — E[S], E[S?] — E[S].
We proceed to proving the converse. First, assume E[X;] = 0 and suppose
S, =3 S but

D, = Zvar[Xj] ARe'S
j=1

Then, notice that
E[|X;°] < E[X;[*]e

and thus

n

> E[X;]’] < Dye
j=1

Consequently, by the CLT for non-identically distributed random variables we

have 1
d
—8, = Z ~N(0,1).
VD, 1)

On the other hand, we have for every ¢ and s > 0 and for all n large enough
P[S,, > t] > P[S, > s1/Dy]. (19)
Since S, 5 S we also have for all ¢ such that P[S = t] = 0 that
P[S,, > t] = P[S > t].
However, upon taking the limit in (19) as n — oo we get for all ¢t and s > 0:
P[S > t] > P[Z > s]

Taking s — 0 we get

P[S > t] > vVt e R

DO | =

which is a contradiction, as no distribution of S can satisfy such inequality.
Next, if E[X,] = pj, thenlet Y; = X; — X]’-, where X]’- is an independent
copy of X;. In this way E[Y;] = 0, var[Y;] = 2var[X] and

Y Y =8,-5,"35-5.
j=1
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Hence, by the previous argument we have
n
Z var[X;] < oo
j=1

and by the direct part of the theorem

n

DX =S = w
j=1

J=1

converges almost surely. Since .S,, converges by assumption, so must do  _ /1.

O

Remark: Conditions (14) are necessary for convergence S, =% S only

under assumption of the boundedness of X; (see homework). We also mention

that instead of relying on the CLT in the proof of the converse direction, we may
have followed a more conventional route, based on the inequality

(a+c)?
P[lrél]?%cn\Sk\ >al>1-— S
The proof of this inequality, however, would appear rather unnatural without
mentioning stopping times. Either method, however, really just shows that con-
dition | X;| < ¢ guarantees the width of the distribution of .S, has the same order
as y/var[S,]. (For unbounded X, rare large jumps may significantly increase
the variance, while having very little effect on the bulk of the distribution of S,,).

Theorem 3 (Kolmogorov). Let X; be independent, zero-mean with finite second
moments and let

Then we have forany 1 < n < oo

E [|M,|*] < 2ZH:IE[X]2] :

Proof: The case of n = oo follows from the case of finite n by the MCT.
Let

Sp=X1+--+ X, (20)
A, = max S}, (21)
1<k<n



Note that for n = 1 we clearly have
E[A2] <E[S7]. (22)

Assume (by induction) that (22) is shown for all sums of upto n — 1 random
variables. Then, notice that

n
Ap :X1+maX(0,X2,X2—I—Xg,...,ZXj).
2

Since first and second terms are independent and E[X] = 0 we get

E[A7] = E[X7] + E[max(0, X2, X2 + X3,..., »_X;)’]  (23)
2
< E[X7] + E[max(X2, Xo + Xs,..., Y _ X;)?] (24)
2
<> EX]], (25)
j=1

where the first inequality follows from (2)? < 22 and the second one is by the
inductive assumption. Thus (22) holds for all n.
By symmetry, we also must have

E[B] <E[S:],  B.= max —Sj.

Finally, since M? = max(A2, B2) and using max(a,b) < a + b we complete
the proof. U
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