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THE STRONG LAW OF LARGE NUMBERS 

While the weak law of large numbers establishes convergence of the sample 

mean, in probability, the strong law establishes almost sure convergence. 

Before we proceed, we point out two common methods for proving almost 

sure convergence. 

Proposition 1. Let {Xn} be a sequence of random variables, not necessarily 
independent. 

P∞ a.s. 
(i) If E[|Xn|

s] < ∞, and s > 0, then Xn → 0. n=1 

P∞ a.s. 
(ii) If n=1 P(|Xn| > ǫ) < ∞, for every ǫ > 0, then Xn → 0. 

a.s. 
(iii) Xn → 0 iff for every ǫ > 0 we have P[sup |Xn| > ǫ] → 0 as n → ∞. m≥n 

P∞ 
Proof. (i) By the monotone convergence theorem, we obtain E[ |Xn|

s] < n=1 
P∞ ∞, which implies that the random variable |Xn|

s is finite, with probabil-n=1 
a.s. 

|s a.s. ity 1. Therefore, |Xn → 0, which also implies that Xn → 0. 

(ii) Setting ǫ = 1/k, for any positive integer k, the Borel-Cantelli Lemma shows 

that the event {|Xn| > 1/k} occurs only a finite number of times, with prob-

ability 1. Thus, P(lim sup > 1/k) = 0, for every positive integer k. n→∞ Xn 
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Note that the sequence of events {lim sup | > 1/k} is monotone and n→∞ |Xn 

converges to the event {lim sup | > 0}. The continuity of probabil-n→∞ |Xn 

ity measures implies that P(lim sup | > 0) = 0. This establishes that n→∞ |Xn 
a.s. 

Xn → 0. 

(iii) This follows since 

[ \ 

{ω : Xn(ω) 6→ 0} = {ω : sup |Xn(ω)| > ǫ} 
m≥n ǫ>0 n≥1 

Theorem 1: Let X, X1,X2, . . . be i.i.d. random variables, and assume that 

E[|X|] < ∞. Let Sn = X1 + · · · + Xn. Then, Sn/n converges to a finite 

constant c almost surely if and only if E[|X|] < ∞ and c = E[X]. 

Proof of necessity of E[|X|] < ∞. Note that 

n 
X 1 an 

ak → 0 ⇒ → 0 
n n 

k=1 

P P n n−1 
(just write an = k=1 ak). Thus, we have k=1 ak − 

Xn − c a.s.
→ 0 

n 

And by Borel-Cantelli this implies 

∞ 
X 

P[|X − c| > n] < ∞ . 
n=1 

R ∞ 
On the other hand, from E[|Y |] = 0 P[|Y | > t] dt we derive 

∞ 
X 

E[|X − c|] ≤ 1 + P[|X − c| > n] < ∞ , 
n=1 

which implies E[|X|] < ∞. By what is to be shown, whenever E[|X|] < ∞ we 

should have 
X1 + · · · + Xn a.s.

→ E[X] 
n 

which implies c = E[X]. 
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Proof of convergence, assuming E[X2] < ∞. We now consider the case where 

we assume additionally that X has a finite second moment E[X2]. We have 

� � 

�Sn 
�2 var(X) 

E − µ = . 
n n 

If we only consider values of n that are perfect squares, we obtain 

∞ � � ∞ 
X

�Si2 
�2 X var(X) 

E − µ = < ∞, 
i2 i2 

i=1 i=1 

� �2 
which implies that (Si2 /i2) − E[X] converges to zero, with probability 1. 

Therefore, Si2 /i2 converges to E[X], with probability 1. 

Suppose that the random variables Xi are nonnegative. Consider some n 
such that i2 ≤ n < (i + 1)2 . We then have Si2 ≤ Sn ≤ S(i+1)2 . It follows that 

Si2 Sn S(i+1)2 

≤ ≤ , 
(i + 1)2 n i2 

or 
i2 Si2 Sn (i + 1)2 S(i+1)2 

· ≤ ≤ · . 
(i + 1)2 i2 n i2 (i + 1)2 

As n → ∞, we also have i → ∞. Since i/(i + 1) → 1, and since Si2 · i2 

converges to E[X], with probability 1, we see that for almost all sample points, 

Sn/n is sandwiched between two sequences that converge to E[X]. This proves 

that Sn/n → E[X], with probability 1. 

For a general random variable X, we write it in the form X = X+ − X− , 

where X+ and X− are nonnegative. The strong law applied to X− and X− 

separately, implies the strong law for X as well. 

Proof of convergence (general case). The proof for the most general case (finite 

mean, but possibly infinite variance) is conceptually simple: We truncate the 

distribution of X and apply previous argument to Y = X · 1{|X| < c}, so that 

the second moment of the latter is finite. Technically, this involves showing that 

difference Y − X, although potentially of infinite variance, cannot contribute 

much to the limiting value. The method is based upon what is called “maximal 

ergodic lemma”, or “weak-L1 ” estimate of the maximal function, see Lemma 1 

below. 

Without loss of generality we assume E[X] = 0. Then by Proposition 1.(iii) 

it suffices to show for every ǫ > 0 

|Sm| 
lim P[ sup > ǫ] = 0 . (1) 
n→∞ m m≥n 
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To that end, fix ǫ, choose (very large) c > 0 and define 

Yn = Xn1{|Xn| ≤ c} (2) 

Zn = Xn1{|Xn| > c} (3) 

Y1 + · · · + Yn 
Tn = (4) 

n 
Z1 + · · · + Zn 

Z ∗ = sup (5) 
n≥1 n 

Note that Yj and Zj are iid. By dominated convergence theorem, as c → ∞ we 

have E[Y ] → 0 and E[|Z|] → 0. Therefore for any δ it is possible to find c > 0 
such that 

ǫ 
|E[Y ]| ≤ (6) 

4 
ǫ 

E[|Z|] ≤ δ (7) 
2 

By the proof above, we have 

a.s. 
Tn → E[Y ] (8) 

and therefore we have 

� � � � 

|Sm| |Tm| 
P sup > ǫ ≤ P sup + |Z ∗ | > ǫ (9) 

m m m≥n m≥n 
� � 

h i |Tm| ǫ ǫ 
≤ P sup > + P |Z ∗ | > (10) 

m 2 2 m≥n 
� � 

h i |Tm − E[Y ]| ǫ ǫ 
≤ P sup > + P |Z ∗ | > (11) 

m 4 2 m≥n 

where (9) is because |Sm − Tm| ≤ Z∗ , (10) follows from the union-bound 

applied to non-negative A, B: 

P[A + B > 2ǫ] ≤ P[A > ǫ] + P[B > ǫ] 

and (11) is because of (6) and |Tm| ≤ |Tm − E[Y ]| + E[Y ]. 
Taking limit of (11) as n → ∞ the first term disappears due to (8) and 

Proposition 1.(iii). The Lemma 1 to follow bounds the second term as 

h i ǫ 2E[|Z|] 
P |Z ∗ | > ≤ ≤ δ . 

2 ǫ 
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Alltogether, we have shown 

� � 

|Sm| 
lim sup P sup > ǫ ≤ δ 

m n→∞ m≥n 

for every δ > 0, which proves (1) and the Theorem. 

Lemma 1 (Estimate for the maximum of averages). Let Zn be iid with E[|Z|] < 
∞ then 

� � 

|Z1 + . . . + Zn| E[|Z|] 
P sup > a ≤ ∀a > 0 

n a n≥1 

Proof. The argument for this Lemma has originally been quite involved, until 

a dramatically simple proof (below) was found by A. Garcia. We note that the 

result applies to arbitrary stationary process {Zn, n = 1, . . .}, although we only 

need an iid version here. 

Define 

n 
X 

Sn = Zk (12) 

k=1 

Ln = max{0, Z1, . . . , Z1 + · · · + Zn} (13) 

Mn = max{0, Z2, Z2 + Z3, . . . , Z2 + · · · + Zn} (14) 

Sn 
Z ∗ = sup (15) 

n≥1 n 

It is sufficient to show that 

E[Z11{Z�>0}] ≥ 0 . (16) 

Indeed, applying (16) to Z̃1 = Z1 − a and noticing that Z̃∗ = Z∗ − a we obtain 

E[Z11{Z�>a}] ≥ aP[Z ∗ > a] , 

from which Lemma follows by upper-bounding the left-hand side with E[|Z1|]. 
In order to show (16) we first notice that {Ln > 0} ր {Z∗ > 0}. Next we 

notice that 

Z1 + Mn = max{S1, . . . , Sn} 

and furthermore 

Z1 + Mn = Ln on {Ln > 0} 

Thus, we have 

Z11{Ln>0} = Ln − Mn1{Ln>0} 
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where we do not need indicator in the first term since Ln = 0 on {Ln > 0}c . 

Taking expectation we get 

E[Z11{Ln>0}] = E[Ln] − E[Mn1{Ln>0}] (17) 

≥ E[Ln] − E[Mn] (18) 

= E[Ln] − E[Ln−1] = E[Ln − Ln−1] ≥ 0 , (19) 

where we used Mn ≥ 0, the fact that Mn has the same distribution as Ln−1, and 

Ln ≥ Ln−1, respectively. Taking limit as n → ∞ in (19) we obtain (16). 

2 THE CHERNOFF BOUND 

Let again X, X1, . . . be i.i.d., and Sn = X1 + · · · + Xn. Let us assume, for sim-

plicity, that E[X] = 0. According to the weak law of large numbers, we know 

that P(Sn ≥ na) → 0, for every a > 0. We are interested in a more detailed 

estimate of P(Sn ≥ na), involving the rate at which this probability converges 

to zero. It turns out that if the moment generating function of X is finite on 

some interval [0, c] (where c > 0), then P(Sn ≥ na) decays exponentially with 

n, and much is known about the precise rate of exponential decay. 

2.1 Upper bound 

Let M(s) = E[esX ], and assume that M(s) < ∞, for s ∈ [0, c], where c > 0. 
s(X1+···+Xn Recall that MSn (s) = E[e )] = (M(s))n . For any s > 0, the Markov 

inequality yields 

sSn nsa) ≤ e −nsa sSn ] = e −nsa(M(s))n 
P(Sn ≥ na) = P(e ≥ e E[e . 

Every nonnegative value of s, gives us a particular bound on P(Sn ≥ a). To 

obtain the tightest possible bound, we minimize over s, and obtain the following 

result. 

Theorem 2. (Chernoff upper bound) Suppose that E[esX ] < ∞ for some 

s > 0, and that a > 0. Then, 

−nφ(a) 
P(Sn ≥ na) ≤ e , 

where 
� � 

φ(a) = sup sa − log M(s) . 
s≥0 
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For s = 0, we have 

sa − log M(s) = 0 − log 1 = 0, 

where we have used the generic property M(0) = 1. Furthermore, 

d � � 1 d 
sa − log M(s) = a − · M(s) = a − 1 · E[X] > 0. 

ds s=0 M(s) ds s=0 

Since the function sa − log M(s) is zero and has a positive derivative at s = 0, 

it must be positive when s is positive and small. It follows that the supremum 

φ(a) of the function sa − log M(s) over all s ≥ 0 is also positive. In particular, 

for any fixed a > 0, the probability P(Sn ≥ na) decays at least exponentially 

fast with n. 

s2/2 Example: For a standard normal random variable X, we have M(s) = e . 

Therefore, sa − log M(s) = sa − s2/2. To maximize this expression over all 

s ≥ 0, we form the derivative, which is a − s, and set it to zero, resulting in 

s = a. Thus, φ(a) = a2/2, which leads to the bound 

−a2n/2 
P(X ≥ na) ≤ e . 

2.2 Lower bound 

Remarkably, it turns out that the estimate φ(a) of the decay rate is tight, under 

minimal assumptions. To keep the argument simple, we introduce some simpli-

fying assumptions. 

Assumption 1. 
(i) M(s) = E[esX ] < ∞, for all s ∈ R. 

(ii) The random variable X is continuous, with PDF fX . 

(iii) The random variable X does not admit finite upper and lower bounds. 

(Formally, 0 < FX (x) < 1, for all x ∈ R.) 

We then have the following lower bound. 

Theorem 2. (Chernoff lower bound) Under Assumption 1, we have 

1 
lim log P(Sn ≥ na) = −φ(a), (20) 
n→∞ n 

for every a > 0. 
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We note two consequences of our assumptions, whose proof is left as an 

exercise: 

log M(s) 
(a) lims→∞ = ∞; 

s 
(b) M(s) is differentiable at every s. 

The first property guarantees that for any a > 0 we have lims→∞(log M(s)− 
sa) = ∞. Since M(s) > 0 for all s, and since M(s) is differentiable, it follows 

∗ that log M(s) is also differentiable and that there exists some s ≥ 0 at which 

log M(s) − sa is minimized over all s ≥ 0. Taking derivatives, we see that such 
′ a s ∗ satisfies a = M ′ (s ∗)/M(s ∗), where M stands for the derivative of M . In 

particular, 
∗ φ(a) = s a − log M(s ∗ ). (21) 

Let us introduce a new PDF 

�s x e 
fY (x) = fX (x). 

M(s ∗) 

This is a legitimate PDF because 

Z Z 

s fY (x) dx =
1 

e 
�xfX (x) dx =

1 
· M(s ∗ ) = 1. 

M(s ∗) M(s ∗) 

The moment generating function associated with the new PDF is 

Z 

1 � M(s + s ∗) sx s MY (s) = e e xfX (x) dx = . 
M(s ∗) M(s ∗) 

Thus, 
1 d M ′ (s ∗) 

E[Y ] = · M(s + s ∗ ) = = a, 
M(s ∗) ds s=0 M(s ∗) 

∗ where the last equality follows from our definition of s . The distribution of Y 
is called a “tilted” version of the distribution of X. 

Let Y1, . . . , Yn be i.i.d. random variables with PDF fY . Because of the 

close relation between fX and fY , approximate probabilities of events involving 

Y1, . . . , Yn can be used to obtain approximate probabilities of events involving 

X1, . . . ,Xn. 

We keep assuming that a > 0, and fix some δ > 0. Let 

n 
n o 

X 1 
B = (x1, . . . , xn) a − δ ≤ xi ≤ a + δ ⊂ Rn . 

n 
i=1 
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Let Sn = X1 + . . . + Xn and Tn = Y1 + . . . + Yn. We have 

� � � � 

P Sn ≥ n(a − δ) ≥ P n(a − δ) ≤ Sn ≤ n(a + δ) 
Z 

= fX (x1) · · · fX (xn) dx1 · · · dxn 
(x1,...,xn)∈B 

Z 

−s −s = (M(s ∗ ))n e 
�x1 fY (x1) · · · e 

�xn fY (xn) dx1 · · · dxn 
(x1,...,xn)∈B 

Z 

−ns�(a+δ) ≥ (M(s ∗ ))n e fY (x1) · · · fY (xn) dx1 · · · dxn 
(x1,...,xn)∈B 

−ns�(a+δ) = (M(s ∗ ))n e P(Tn ∈ B). (22) 

The second inequality above was obtained because for every (x1, . . . , xn)] ∈ B, 
−s x1 −s xn −ns�(a+δ) we have x1 + · · · + xn ≤ n(a + δ), so that e 

� 
· · · e 

� 
≥ e . 

By the weak law of large numbers, we have 

� � Y1 + · · · + Yn 
P(Tn ∈ B) = P ∈ [na − nδ, na + nδ] → 1, 

n 

as n → ∞. Taking logarithms, dividing by n, and then taking the limit of the 

two sides of Eq. (22), and finally using Eq. (21), we obtain 

∗ lim inf 
1 
log P(Sn ≥ na − nδ) ≥ log M(s ∗ ) − s a − s ∗ δ = −φ(a) − s ∗ δ. 

n→∞ n 

This inequality is true for every a > 0 and δ > 0. By replacing a with a + δ, we 

have 

lim inf 
1 
log P(Sn ≥ na) ≥ −φ(a + δ) − s ∗ δ. 

n→∞ n 
The proof of the lower bound in Eq. (20) is completed by verifying that the 

function φ is continuous (the proof is omitted and is left as an exercise) and 

letting δ ↓ 0. 
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