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1 EQUIVALENCE OF THE THREE DEFINITIONS OF THE MULTI-

VARIATE NORMAL DISTRIBUTION 

1.1 The definitions 

Recall the following three definitions from the previous lecture. 

Definition 1. A random vector X has a nondegenerate (multivariate) nor-

mal distribution if it has a joint PDF of the form 

n1 (x − µ)V −1(x − µ)T
fX (x) = p exp − , 

(2π)n|V | 2 

for some real vector µ and some positive definite matrix V . 
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Definition 2. A random vector X has a (multivariate) normal distribution 

if it can be expressed in the form 

X = DW + µ, 

for some matrix D and some real vector µ, where W is a random vector 

whose components are independent N(0, 1) random variables. 

Definition 3. A random vector X has a (multivariate) normal distribution 

if for every real vector a, the random variable a T 
X is normal. 

PROOF OF EQUIVALENCE 

In the course of the proof of Theorem 1 in the previous lecture, we argued that 

if X is multivariate normal, in the sense of Definition 2, then: 

(a) It also satisfies Definition 3: if X = DW + µ, where the Wi are indepen-

dent, then a T 
X is a linear function of independent normals, hence normal. 

(b) As long as the matrix D is nonsingular (equivalently, if Cov(X, X) = DDT

is nonsingular), X also satisfies Definition 1. (We used the derived distribu-

tions formula.) 

We complete the proof of equivalence by establishing converses of the above 

two statements. 

Theorem 1. 

(a) If X satisfies Definition 1, then it also satisfies Definition 2. 

(b) If X satisfies Definition 3, then it also satisfies Definition 2. 

Proof: 

(a) Suppose that X satisfies Definition 1, so in particular, the matrix V is posi-

tive definite. Let D be a symmetric matrix such that D2 = V . Since 

(det(D))2 = det(D2) = det(V ) > 0, 
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we see that D is nonsingular, and therefore invertible. Let 

W = D−1(X − µ).

Note that E[W] = 0. Furthermore, 

Cov(W, W) = E[D−1(X − µ)(X − µ)T D−1]

= D−1
E[(X − µ)(X − µ)T ]D−1 

= D−1V D−1 = I. 

We have shown thus far that the Wi are normal and uncorrelated. We now 

proceed to show that they are independent. Using the formula for the PDF 

of X and the change of variables formula, we find that the PDF of W is of 

the form 

T 2 c · exp{−w w/2} = c · exp{(w1 + · · · + wn)
2/2},

for some normalizing constant c, which is the joint PDF of a vector of in-

dependent normal random variables. It follows that X = DW + µ is a 

multivariate normal in the sense of Definition 2. 

(b) Suppose that X satisfies Definition 3, i.e., any linear function a T 
X is nor-

mal. Let V = Cov(X, X), and let D be a symmetric matrix such that 

D2 = V . We first give the proof for the easier case where V (and therefore 

D) is invertible. 

Let W = D−1(X − µ). As before, E[W] = 0, and Cov(W, W) = I . Fix 

a vector s, Then, s T 
W is a linear function of W, and is therefore normal. 

Note that 

T T T T var(s W) = E[s WW s] = s T Cov(W, W)s = s s. 

Since s T 
W is a scalar, zero mean, normal random variable, we know that 

T T T MW(s) = E[exp{s W}] = M (1) = exp{var(s W)/2} = exp{s s/2}.sT W 

We recognize that this is the transform associated with a vector of inde-

pendent standard normal random variables. By the inversion property of 

transforms, it follows that W is a vector of independent standard normal 

random variables. Therefore, X = DW + µ is multivariate normal in the 

sense of Definition 2. 
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(b) ′ Suppose now that V is singular (as opposed to positive definite). For sim-

plicity, we will assume that the mean of X is zero. Then, there exists some 

a 6= 0, such that V a = 0, and a T V a = 0. Note that 

� �

T 
a T V a = E (a X)2 . 

This implies that a T 
X = 0, with probability 1. Consequently, some com-

ponent of X is a deterministic linear function of the remaining components. 

By possibly rearranging the components of X, let us assume that Xn is a lin-

ear function of (X1, . . . ,Xn−1). If the covariance matrix of (X1, . . . ,Xn−1) 
is also singular, we repeat the same argument, until eventually a nonsingu-

lar covariance matrix is obtained. At that point we have reach the situation 

where X is partitioned as X = (Y, Z), with Cov(Y, Y) > 0, and with Z a 

linear function of Y (i.e., Z = AY, for some matrix A, with probability 1). 

The vector Y also satisfies Definition 3. Since its covariance matrix is non-

singular, the previous part of the proof shows that it also satisfies Defini-

tion 2. Let k be the dimension of Y. Then, Y = DW, where W consists 

of k independent standard normals, and D is a k × k matrix. Let W be a 

vector of n − k independent standard normals. Then, we can write 

� � � � � �

Y D 0 W
X = = , 

Z AD 0 W

which shows that X satisfies Definition 2. 

We should also consider the extreme possibility that in the process of elimi-

nating components of X, a nonsingular covariance matrix is never obtained. 

But in that case, we have X = 0, which also satisfies Definition 2, with 

D = 0. (This is the most degenerate case of a multivariate normal.) 

WHITENING OF A SEQUENCE OF NORMAL RANDOM VARIABLES 

The last part of the proof in the previous section provides some interesting intu-

ition. Given a multivariate normal vector X, we can always perform a change of 

coordinates, and obtain a representation of that vector in terms of independent 

normal random variables. Our process of going from X to W involved factoring 

the covariance matrix V of X in the form V = D2 , where D was a symmetric 

square root of V . However, other factorizations are also possible. The most 

useful one is described below. 
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Let 

W1 = X1, 

W2 = X2 − E[X2 | X1],

W3 = X3 − E[X3 | X1,X2],

. . . . . . 

Wn = Xn − E[Xn | X1, . . . ,Xn−1].

(a) Each Wi can be interpreted as the new information provided by Xi, given 

the past, (X1, . . . ,Xi−1). The Wi are sometimes called the innovations. 

(b) When we deal with multivariate normals, conditional expectations are linear 

functions of the conditioning variables. Thus, the Wi are linear functions of 

the Xi. Furthermore, we have W = LX, where L is a lower triangular ma-

trix (all entries above the diagonal are zero). The diagonal entries of L are 

all equal to 1, so L is invertible. The inverse of L is also lower triangular. 

This means that the transformation from X to W is causal (Wi can be de-

termined from X1, . . . ,Xi) and causally invertible (Xi can be determined 

from W1, . . . ,Wi). Engineers sometimes call this a “causal and causally 

invertible whitening filter.” 

(c) The Wi are independent of each other. This is a consequence of the general 

fact E[(X − E[X | Y ])Y ] = 0, which shows that the Wi is uncorrelated 

with X1, . . . ,Xi−1, hence uncorrelated with W1, . . . ,Wi−1. For multivari-

ate normals, we know that zero correlation implies independence. As long 

as the Wi have nonzero variance, we can also normalize them so that their 

variance is equal to 1. 

(d) The covariance matrix of W, call it B, is diagonal. An easy calculation 

shows that Cov(X, X) = L−1B(L−1)T . This kind of factorization into a 

product of a lower triangular (L−1B1/2) and upper triangular (B1/2(L−1)T ) 

matrix is called a Cholesky factorization. 

INTRODUCTION TO CHARACTERISTIC FUNCTIONS 

We have defined the moment generating function MX (s), for real values of 

s, and noted that it may be infinite for some values of s. In particular, if 

MX (s) = ∞ for every s 6= 0, then the moment generating function does not 

provide enough information to determine the distribution of X. (As an example, 
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consider a PDF of the form fX (x) = c/(1 + x2), where c is a suitable nor-

malizing constant.) A way out of this difficulty is to consider complex values 

of s, and in particular, the case where s is a purely imaginary number: s = it, √ 
where i = −1, and t ∈ R. The resulting function is called the characteristic 

function, formally defined by 

itX ]. φX (t) = E[e 

For example, when X is a continuous random variable with PDF f , we have 

Z

ixtf (x) dx, φX (t) = e 

which very similar to the Fourier transform of f (except for the absence of a 

minus sign in the exponent). Thus, the relation between moment generating 

functions and characteristic functions is of the same kind as the relation between 

Laplace and Fourier trasnforms. 

Note that eitX is a complex-valued random variable, a new concept for us. 

However, using the relation eitX = cos(tX)+i sin(tX), defining its expectation 

is straightforward: 

φX (t) = E[cos(tX)] + iE[sin(tX)]. 

We make a few key observations: 

(a) Because |eitX | ≤ 1 for every t, its expectation, φX (t) is well-defined and 

finite for every t ∈ R. In fact, |φX (t)| ≤ 1, for every t. 

(b) The key properties of moment generating functions (cf. Lecture 14) are also 

valid for characteristic functions (same proof). 

Theorem 2. 

itbφX (at). (a) If Y = aX + b, then φY (t) = e 

(b) If X and Y are independent, then φX+Y (t) = φX (t)φY (t). 

(c) Let X and Y be independent random variables. Let Z be equal to X, 

with probability p, and equal to Y , with probability 1 − p. Then, 

φZ (t) = pφX (t) + (1 − p)φY (t).

(c) Inversion theorem: If two random variables have the same characteristic 

function, then their distributions are the same. We prove this result below. 
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(d) The above inversion theorem remains valid for multivariate characteristic 

functions, defined by φX(t) = E[eit
T X]. 

(e) For the univariate case, if X is a continuous random variable with PDF fX , 

there is an explicit inversion formula, namely 
Z T 

fX (x) =
1 

lim e −itxφX (t) dt, 
2π T →∞ −T

for every x at which fX is differentiable. (Note the similarity with inversion 

formulas for Fourier transforms.) 

(f) The dominated convergence theorem can be applied to complex random 

variables (simply apply the DCT separately to the complex and imaginary 

parts). Thus, if limn→∞ Xn = X, a.s., then, for every t ∈ R, 
� � 

itXn ] = E itXn itX ] = φX (t). lim φXn (t) = lim E[e lim e = E[e 
n→∞ n→∞ n→∞ 

The DCT applies here, because the random variables |eitXn | are bounded 

by 1. 

(g) If E[|X|k] < ∞, then φX (t) is k-times continuously differentiable and also 

dk
φX (t) = ikE[Xk]. 

dtk t=0 

(This is plausible, by moving the differentiation inside the expectation, but 

a formal justification is needed.) 

(h) If E[eǫ|X|] < ∞ for some ǫ > 0 (equivalently if MGF of X exists in a 

neigborhood of zero) then φX (t) is analytic function of t, which extends to 

all complex z inside a strip {z : −ǫ < Im z < ǫ}. 

Two useful characteristic functions: 

(a) Exponential: If fX (x) = λe−λx , x ≥ 0, then 

λ 
φX (y) = . 

λ − it

Note that this is the same as starting with MX (s) = λ/(λ−s) and replacing 

s by it; however, this is not a valid proof. One must either use tools from 

complex analysis (contour integration), or evaluate separately E[cos(tX)], 
E[sin(tX)], which can be done using integration by parts. 

d 
(b) Normal (scalar): If X = N(µ, σ2), then 

itµ −t2σ2/2 φX (t) = e e . 
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4.1 Inversion theorem 

Theorem 3 (Inversion theorem). Let X and Y have the same characteristic 

functions. Then PX = PY . 

Proof. Let a > 1 and consider the following “trapezoidal function” 


 0, |x| ≥ a
 
 

fa(x) = 

 
 1 (x + a),a−1 −a < x < −1

 1, −1 ≤ x ≤ 1
 
 
 
 1 − (x − a),a−1 1 < x < a

Note that 

lim fa(x) = 1[−1,1](x) 
a→1+ 

(1) 

Furthermore, there is an identity 
Z

� �

fa(x) = 
4 √ 

(a − 1) 2π
−itx 1e 

t2 
R

1 
sin2 ta

a 2 
− sin2 t 

2 
dt (2) 

To show this you may either compute the integral directly or use Fourier inver-
1 sion and the observation that fa = a−1 (g ∗ g − h ∗ h), where g = 1[−a/2,a/2], 

h = 1[−1,1] and ∗ is convolution. 

Note that the integral in (2) is absolutely convergent since the absolute value 

of the integrand 
1 1 

sin2 ta − sin2 t 
t2 a 2 2 

is continuous at 0 and integrable at +∞. Thus, by Fubini we have 

� �
Z

4 1 1 
E[fa(X)] = √ φX (−t) sin2 ta − sin2 t dt 

(a − 1) 2π R t2 a 2 2 

Since φX = φY we have 

E[fa(X)] = E[fa(Y )] 

for every a > 1. Taking limit as a ց 1 and applying the BCT to (1) we get 

PX ([−1, 1]) = PY ([−1, 1])

A similar argument (with shifted and scaled fa) shows that PX and PY co-

incide on every closed interval. Since the collection of closed intervals is a 

generating p-system, we have PX = PY . 
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4.2 Vector-valued random variables 

A very useful extension is to define characteristic function for vector-valued 

random variable X = (X1, . . . ,Xd)
T ∈ Rd . In this case characteristic function 

is defined on Rd as follows: 

h i

itT X d φX(t) = E e , t = (t1, . . . , td)
T ∈ R 

where tT 
X = 

P

j
d 
=1 tj Xj denotes a standard scalar product on Rd . 

Most of the properties and results above (including inversion theorem) carry 

over to the vector case. This leads to numerous useful implications, of which we 

discuss two: 

1. Checking independence: If X = (X1, . . . ,Xd)
T , then Xj are indepen-

dent if and only if 
d 
Y

φX(t) = φXj (tj ) (3) 

j=1 

This easily follows from the inversion theorem, since right-hand side rep-
Qd 

resents the characteristic function of distribution . j=1 PXj 

2. Fourth definition of multivariate normal. It is not hard to show that for 

(degenerate or non-degenerate) multivariate normal X we have 

iµT t− 1 
tT V t φX(t) = e 2 (4) 

where µ = E[X] and V = Cov(X, X). Since φ uniquely determines the 

distribution, property (4) is frequently taken as the definition of a multi-

variate normal. Most properties then follow immediately. For example, 

“uncorrelated implies independent” is just a consequence of (3). 
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