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MOMENT GENERATING FUNCTIONS 

Contents 

1. Moment generating functions 

2. Sum of a random number of random variables 

3. Transforms associated with joint distributions 

Moment generating functions, and their close relatives (probability gener-

ating functions and characteristic functions) provide an alternative way of rep-

resenting a probability distribution by means of a certain function of a single 

variable. 

These functions turn out to be useful in many different ways: 

(a) They provide an easy way of calculating the moments of a distribution. 

(b) They provide some powerful tools for addressing certain counting and 

combinatorial problems. 

(c) They provide an easy way of characterizing the distribution of the sum of 

independent random variables. 

(d) They provide tools for dealing with the distribution of the sum of a random 

number of independent random variables. 

(e) They play a central role in the study of branching processes. 

(f) They play a key role in large deviations theory, that is, in studying the 

asymptotics of tail probabilities of the form P(X ≥ c), when c is a large 

number. 

(g) They provide a bridge between complex analysis and probability, so that 

complex analysis methods can be brought to bear on probability problems. 

(h) They provide powerful tools for proving limit theorems, such as laws of 

large numbers and the central limit theorem. 
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1 MOMENT GENERATING FUNCTIONS 

1.1 Definition 

Definition 1. The moment generating function associated with a random 

variable X is a function MX : R → [0, ∞] defined by 

sX ]. MX (s) = E[e 

The domain DX of MX is defined as the set DX = {s | MX (s) < ∞}. 

If X is a discrete random variable, with PMF pX , then 

X 

sx MX (s) = e pX (x). 
x 

If X is a continuous random variable with PDF fX , then 

Z 

MX (s) = e sxfX (x) dx. 

Note that this is essentially the same as the definition of the Laplace transform 

of a function fX , except that we are using s instead of −s in the exponent. 

1.2 The domain of the moment generating function 

Note that 0 ∈ DX , because MX (0) = E[e0X ] = 1. For a discrete random 

variable that takes only a finite number of different values, we have DX = R. 

For example, if X takes the values 1, 2, and 3, with probabilities 1/2, 1/3, and 

1/6, respectively, then 

1 1 1 s 2s 3s MX (s) = e + e + e , (1) 
2 3 6 

which is finite for every s ∈ R. On the other hand, for the Cauchy distribution, 

fX (x) = 1/(ˇ(1 + x2)), for all x, it is easily seen that MX (s) = ∞, for all 

s 6= 0. 

In general, DX is an interval (possibly infinite or semi-infinite) that contains 

zero. 

Exercise 1. Suppose that MX (s) < ∞ for some s > 0. Show that MX (t) < ∞ for all 

t ∈ [0, s]. Similarly, suppose that MX (s) < ∞ for some s < 0. Show that MX (t) < ∞ 
for all t ∈ [s, 0]. 
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Exercise 2. Suppose that 

log P(X > x) 
lim sup , −� < 0. 

x x!1 

Establish that MX (s) < ∞ for all s ∈ [0, �). 

1.3 Inversion of transforms 

By inspection of the formula for MX (s) in Eq. (1), it is clear that the distribu-

tion of X is readily determined. The various powers esx indicate the possible 

values of the random variable X, and the associated coefficients provide the 

corresponding probabilities. 

At the other extreme, if we are told that MX (s) = ∞ for every s 6= 0, this 

is certainly not enough information to determine the distribution of X. 

On this subject, there is the following fundamental result. It is intimately 

related to the inversion properties of Laplace transforms. Its proof requires so-

phisticated analytical machinery and is omitted. 

Theorem 1. Inversion theoremSuppose that MX (s) is finite for all s in 

an interval of the form [−a, a], where a is a positive number. Then, MX 

determines uniquely the CDF of the random variable X. 

In particular, if MX (s) = MY (s) < ∞, for all s ∈ [−a, a], where a is a 

positive number, then the random variables X and Y have the same CDF. 

There are explicit formulas that allow us to recover the PMF or PDF of a ran-

dom variable starting from the associated transform, but they are quite difficult 

to use (e.g., involving “contour integrals”). In practice, transforms are usually 

inverted by “pattern matching,” based on tables of known distribution-transform 

pairs. 

1.4 Moment generating properties 

There is a reason why MX is called a moment generating function. Let us con-

sider the derivatives of MX at zero. Assuming for a moment we can interchange 

the order of integration and differentiation, we obtain 

dMX (s) d sX ] = E[XesX ] = E[e = E[X], 
ds s=0 ds s=0 s=0 

dmMX (s) dm 
sX ] sX ] = E[e = E[Xm e = E[Xm] 

dsm s=0 dsm s=0 s=0 
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Thus, knowledge of the transform MX allows for an easy calculation of the 

moments of a random variable X. 

Justifying the interchange of the expectation and the differentiation does 

require some work. The steps are outlined in the following exercise. For sim-

plicity, we restrict to the case of nonnegative random variables. 

Exercise 3. Suppose that X is a nonnegative random variable and that MX (s) < ∞
for all s ∈ (−∞, a], where a is a positive number. 

(a) Show that E[Xk] < ∞, for every k. 

(b) Show that E[XkesX ] < ∞, for every s < a. 

(c) Show that (ehX − 1)/h ≤ XehX . 

(d) Use the DCT to argue that 

h hX − 1 i hX ] − 1e E[e 
E[X ] = E lim = lim . 

h#0 h h#0 h 

1.5 The probability generating function 

For discrete random variables, the following probability generating function 

is sometimes useful. It is defined by 

gX (s) = E[s X ], 

with s usually restricted to positive values. It is of course closely related to the 

moment generating function in that, for s > 0, we have gX (s) = MX (log s). 
One difference is that when X is a positive random variable, we can define 

gX (s), as well as its derivatives, for s = 0. So, suppose that X has a PMF 

pX (m), for m = 1, . . .. Then, 

1 
X

m gX (s) = s pX (m), 
m=1 

resulting in 

dm 

gX (s) = m! pX (m). 
dsm s=0 

(The interchange of the summation and the differentiation needs justification, 

but is indeed legitimate for small s.) Thus, we can use gX to easily recover the 

PMF pX , when X is a positive integer random variable. 

At the same time 

X d 
gX (s) = mpX (m) = E[X]. 

ds s=1 
m�1 
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1.6 Examples 

d 
Example : X = Exp(�). Then, 

ˆ 
Z 1 � 

�−s 
, s < �; sx�e−�x dx = MX (s) = e ∞, otherwise. 0 

d 
Example : X = Ge(p) 

( 

1 se p 
X 

s , e < 1/(1 − p); sm 1−(1−p)es 
MX (s) = e p(1 − p)m−1 

∞, otherwise. 
m=1 

In this case, we also find gX (s) = ps/(1 − (1 − p)s), s < 1/(1 − p) and 

gX (s) = ∞, otherwise. 

d 
Example : X = N(0, 1). Then, 

Z 

1 1 x2 

MX (s) = √ exp(sx) exp(− )dx 
2ˇ −1 2 

Z 1 2 exp(s2/2) x2 + 2sx − s 
= √ exp(− )dx 

2ˇ −1 2 

= exp(s 2/2). 

1.7 Properties of moment generating functions 

We record some useful properties of moment generating functions. 

Theorem 2. 

(a) If Y = aX + b, then MY (s) = esbMX (as). 

(b) If X and Y are independent, then MX+Y (s) = MX (s)MY (s). 

(c) Let X and Y be independent random variables. Let Z be equal to X, with 

probability p, and equal to Y , with probability 1 − p. Then, 

MZ (s) = pMX (s) + (1 − p)MY (s). 

Proof: For part (a), we have 

MX (aX + b) = E[exp(saX + sb)] = exp(sb)E[exp(saX)] = exp(sb)MX (as). 
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For part (b), we have 

MX+Y (s) = E[exp(sX + sY )] = E[exp(sX)]E[exp(sY )] = MX (s)MY (s). 

For part (c), by conditioning on the random choice between X and Y , we have 

sZ ] = pE[e MZ(s) = E[e sX ] + (1 − p)E[e sY ] = pMX (s) + (1 − p)MY (s). 

Example : (Normal random variables) 

(a) Let X be a standard normal random variable, and let Y = ˙X + µ, which we know 
1 to have a N(µ, ˙2) distribution. We then find that MY (s) = exp(sµ + s2˙2). 2 

d 
(b) Let X = N(µ1, ˙1

2) and Y = N(µ2, ˙2
2). Then, 

n o 

MX+Y (s) = exp( s(µ1 + µ2) + 
1 
s 2(˙1

2 + ˙2
2) . 

2 

d
Using the inversion property of transforms, we conclude that X + Y = N(µ1 + 
µ2, ˙1

2 + ˙2
2), thus corroborating a result we first obtained using convolutions. 

SUM OF A RANDOM NUMBER OF INDEPENDENT RANDOM VARI-

ABLES 

Let X1,X2, . . . be a sequence of i.i.d. random variables, with mean µ and vari-

ance ˙2 . Let N be another independent random variable that takes nonnegative 
PN 

integer values. Let Y = i=1 Xi. Let us derive the mean, variance, and mo-

ment generating function of Y . 
We have 

E[Y ] = E[E[Y | N ]] = E[Nµ] = E[N ]E[X]. 

Furthermore, using the law of total variance, 

� � � � 

var(Y ) = E var(Y | N) + var E[Y | N ]

= E[N˙2] + var(Nµ) 

= E[N ]˙2 + µ 2var(N). 

Finally, note that 

E[exp(sY ) | N = n] = Mn (s) = exp(n log MX (s)), X 
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implying that 

1 
X

MY (s) = exp(n log MX (s))P(N = n) = MN (log MX (s)). 
n=1 

The reader is encouraged to take the derivative of the above expression, and 

evaluate it at s = 0, to recover the formula E[Y ] = E[N ]E[X]. 

Example : Suppose that each Xi is exponentially distributed, with parameter �, and 

that N is geometrically distributed, with parameter p ∈ (0, 1). We find that 

log MX (s) e p p�/(� − s) �p 
MY (s) = = = 

1 − elog MX (s)(1 − p) 1 − �(1 − p)/(� − s) �p − s 

which we recognize as a moment generating function of an exponential random variable 

with parameter �p. Using the inversion theorem, we conclude that Y is exponentially 

distributed. In view of the fact that the sum of a fixed number of exponential random 

variables is far from exponential, this result is rather surprising. An intuitive explanation 

will be provided later in terms of the Poisson process. 

TRANSFORMS ASSOCIATED WITH JOINT DISTRIBUTIONS 

If two random variables X and Y are described by some joint distribution (e.g., 

a joint PDF), then each one is associated with a transform MX (s) or MY (s). 
These are the transforms of the marginal distributions and do not convey infor-

mation on the dependence between the two random variables. Such information 

is contained in a multivariate transform, which we now define. 

Consider n random variables X1, . . . ,Xn related to the same experiment. 

Let s1, . . . , sn be real parameters. The associated multivariate transform is a 

function of these n parameters and is defined by 

� � 

s1X1+···+snXn MX1,...,Xn (s1, . . . , sn) = E e . 

The inversion property of transforms discussed earlier extends to the multi-

variate case. That is, if Y1, . . . , Yn is another set of random variables and 

MX1,...,Xn (s1, . . . , sn), MY1,...,Yn (s1, . . . , sn) are the same functions of s1, . . . , sn, 

in a neighborhood of the origin, then the joint distribution of X1, . . . ,Xn is the 

same as the joint distribution of Y1, . . . , Yn. 
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Remarks: 

(a) Consider two random variables X and Y . Their joint transform is 

sX tY ] = E[e MX,Y (s, t) = E[e e sX+tY ] = MZ (1), 

where Z = sX + tY . Thus, calculating a multivariate transform essentially 

amounts to calculating the univariate transform associated with a single ran-

dom variable that is a linear combination of the original random variables. 

(b) If X and Y are independent, then MX,Y (s, t) = MX (s)MY (t). 

8 



MIT OpenCourseWare 
https://ocw.mit.edu 

6.436J / 15.085J Fundamentals of Probability 
Fall 2018 

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms 

https://ocw.mit.edu
https://ocw.mit.edu/terms

	cover.pdf
	Blank Page




