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CONTINUOUS RANDOM VARIABLES - II 
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1 REVIEW  OF  JOINT  DISTRIBUTIONS

Recall that two random variables X and Y are said to be jointly continuous if 
there exists a nonnegative measurable function fX,Y such that 

P(X ≤ x, Y ≤ y) =

Once we have in our hands a general definition of integrals, this can be used to 
establish that for every Borel subset of R2, we  have  

P((X, Y ) ∈ B) =  fX,Y (u, v) du dv.
B 

Furthermore, X is itself a continuous random variable, with density fX given 
by 

∞ 

fX (x) = fX,Y (x, y) dy. 
−∞ 

1 

∫ x

−∞

∫ y

−∞
fX,Y (u, v) dv du.

∫

∫
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Definition 1. K : Ω1 × F2 → [0, 1] is called a transition probability kernel

(or a Markov kernel) acting from (Ω1, F1) to (Ω2, F2) if: 

1. K(ω1, ·) is a probability measure on (Ω2, F2) for each ω1 ∈ Ω1 

2. ω1 �→ K(ω1, B) is an F1-measurable function for each B ∈ F2.

In some disciplines, it is common to abuse notation and say “Let K : (Ω1, F1) →
(Ω2, F2) be a Markov kernel” or even “Let K : Ω1 → Ω2 be a Markov kernel”, 
even though K is not a map between spaces. 

Example: When Ω1 and Ω2 are finite, any Markov kernel K acting from 
(Ω1, 2Ω1 ) to (Ω2, 2Ω2 ) is simply an |Ω1| × |Ω2| matrix of non-negative values

with row-sums all equal to 1. Such matrices are called stochastic (or right-

stochastic, or row-stochastic). 

Example: The following transition probability kernel acts between (R, B)
and (R, B). It  is  called  the  additive Gaussian noise channel: 

(y−x)21 − K(x, dy) =  √ e 2σ2 dy x, y ∈ R.
2πσ2 

This kernel “blurs” every point into a Gaussian cloud of width σ. 

2 

Finally, recall that E[g(X)] =
∫

g(x)fX(x) dx. Similar to the discrete

case, the expectation of g(X) = Xm and g(X) = (X − E[X])m is called

the mth moment and the mth central moment, respectively, of X. In particular,

var(X) , E[(X − E[X])2] is the variance of X.

We note that all of the definitions and formulas have obvious extensions to

the case of more than two random variables.

2 MARKOV KERNELS

Random variables X and Y endowed with a product measures PX × PY are

necessarily independent X ⊥⊥ Y . How do we construct PX,Y for dependent

variables? One method is to define X and Y on the same probability space

and compute PX,Y using the Definition given in Lecture 10. Another method

involves the following concept:
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Theorem 1. For any probability measure P1 and transition probability kernel 
K there exists a unique probability measure π (denoted P1 × K) on  (Ω1 ×
Ω2,F1 × F2) such that 

π(A × B) =  K(ω1, B)P1(dω1).
A 

Furthermore, whenever f ≥ 0 or f is π-integrable we have

f(ω1,ω2)dπ = P1(dω1) f(ω1,ω2)K(ω1, dω2) . (1) 
Ω1×Ω2 Ω1 Ω2

Proof. Repeat the steps in the proofs of Theorems 2 and 3 in Lecture 9 with 
trivial modifications. 

The measure π on Ω1 × Ω2 corresponds to the following stochastic experi-

ment: 

• Draw ω1 in accordance with distribution P1(·).

• Then draw ω2 in accordance with distribution K(ω1, ·).

• Output pair (ω1,ω2).

Caution: Many different kernels can lead to the same product measure, i.e. 

P1 × K = P1 × K ′ ̸⇒ K = K ′ .

Indeed if P1(A) = 0, then  K(x, ·) can be defined arbitrarily for all x ∈ A
without affecting the product measure. 

2.1 Measure-kernel-function 

Markov kernels can act on functions and on measures and these actions are 
associative. 

Proposition 1. Let K be a Markov kernel from (Ω1,F1) to (Ω2,F2). Then

1. The kernel K pulls back non-negative functions f on Ω2 to non-negative

functions on Ω1:

and this map ω1 �→ (Kf)(ω1) is F1 measurable.
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(Kf)(ω1) ,

∫

Ω2

f(ω2)K(ω1, dω2),
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2. The kernel K pushes forward probability measures from Ω1 to Ω2. Namely

for each µ on (Ω1, F1) there exists a unique probability measure ν = µK
on (Ω2, F2) satisfying 

ν(B) = K(ω1, B)dµ. (2) 
Ω1

3. These actions are compatible: for any µ on Ω1 and f ≥ 0 on Ω2 

(Kf )(ω1) dµ = f (ω2) dν . (3) 
Ω1 Ω2

Proof. We only sketch the details. For 1 notice that measurability of Kf for 
simple functions follows from the definition of Markov kernel. This extends to 
general functions by taking limits. For 2 notice that by the MCT assignment (2) 
indeed defines a σ-additive probability measure. Finally, 3 is obvious for simple 
functions and otherwise take limits. 

It is common to denote the integral fdµ  as µf or µ(f ), i.e.  the  action  of

µ on f . In  such  notation,  result  (3)  can  be  stated  as  

(µK)f = µ(Kf ), (4) 

and this justifies the so-called measure-kernel-function notation: µKf (without 
parentheses). When Ω1 and Ω2 are finite it is customary to represent a mea-

sures µ as a row-vector, a kernel K as a stochastic matrix and a function f as as 
column vector. In that case, (4) is equivalent to associativity of matrix multipli-

cation. 

2.2 Conditional CDFs and PDFs 

Here we give a general method for constructing Markov kernels (and  via  Theo-

rem 1 – joint distributions PX,Y ). 

Proposition 2. The following define Markov kernels acting from (R, B) to itself:

(a) Let fX|Y (x|y) be a non-negative function jointly measurable in (x, y) and

satisfying1 

fX|Y (x|y) dx = 1  y ∈ R, (5) 
R 

then 
K(y, dx) = fX|Y (x|y)dx (6) 

defines a Markov kernel. 
1Such functions are known as conditional PDFs. 
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(b) Let FX|Y (x|y) be a function jointly measurable in (x, y), such  that  FX|Y (·|y)
is a CDF 2 for every y ∈ R. Then  there  exists  a  unique  Markov  kernel  s.t.  

K(y, (a, b]) = FX|Y (b|y)− FX|Y (a|y). (7)

Proof. Part (a) is easy: (6) is a measure for every fixed y by (5). The function 

y �→ fX|Y (x|y)dx
B 

is measurable for every B ∈ B by Fubini’s theorem. For Part (b) again (7)

extends to a unique probability measure. We need to verify that the map 

y �→ K(y, B)

n is measurable for every B. For  B = (ai, bi] – a  finite  disjoint  union  ofi=1 
intervals – this follows from (7) and measurability of finite sums. Then define 
the collection: 

L = {B ∈ B : y �→ K(y, B) –measurable function}.

We have shown that L contains algebra of finite unions of intervals (a, b]. It  is
easy to show that L is a monotone class. Thus, L = B and we are done. 

Example. Take PDF fY and conditional PDF fX|Y . Let  

PY (dy) = fY (y)dy (8) 

K(y, dx) = fX|Y (x|y)dx (9) 

Then the product measure π = PY × K constructed in Theorem 1 satisfies

π(dx dy) = fX|Y (x|y)fY (y) dx dy

In particular, π is a jointly continuous distribution with density fX,Y = fX|Y fY . 

3 DISINTEGRATION  OF  JOINT  DISTRIBUTIONS

Main question we will address here: given PX,Y does there exist PY and K such 
that PX,Y = PY × K?

2Such functions FX|Y are known as conditional CDFs. 
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Definition 2. Let PX,Y be a probability measure on (R2 , B2) with marginal

PY . A  Markov  kernel  K(y, ·) is called a regular branch of conditional prob-

ability for X given Y (denoted PX|Y (·|y)) if  

PX,Y = PY × K (10) 

in the sense of Theorem 1. Equivalently, if 

PX,Y [A × B] =  K(y, A) dPY (11) 
B 

for all A, B ∈ B. Furthermore,  if  K is defined via (6) then fX|Y is called

a conditional PDF, and  if  K is defined via (7) then FX|Y is called a condi-

tional CDF. 

Note: One should not confuse “a regular branch of conditional probability” 
(which is a Markov kernel) with conditional probability P[X ∈ A|Y ] (which

is a random variable; see below). It should also be clear that neither PX|Y (a 
kernel), nor fX|Y (a conditional PDF, when it exists), nor FX|Y (a conditional 
CDF) are unique. Finally, equivalence of (10) and (11) follows from the fact 
that {A × B} is a generating p-system for B × B.

3.1 Simple case: jointly-continuous PX,Y

For the case of discrete random variables, the conditional CDF is defined by 
FX|Y (x | y) = P(X ≤ x | Y = y), for  any  y such that P(Y = y) > 0. However,

this definition cannot be extended to the continuous case because P(Y = y) = 0, 
for every y. Instead,  we  should  think  of  FX|Y (x | y) as a limit of P(X ≤ x | y ≤
Y ≤ y + δ), as  δ decreases to zero. Note that 

FX|Y (x | y) ≈ P(X ≤ x | y ≤ Y ≤ y + δ)

P(X ≤ x, y ≤ Y ≤ y + δ)
= 

P(y ≤ Y ≤ y + δ)
x y+δ fX,Y (u, v) dv du −∞ y ≈

δfY (y) 
x δ fX,Y (u, y) du −∞ ≈

δfY (y) 
x fX,Y (u, y) du −∞ = . 

fY (y) 
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This heuristic motivates the next result. 

Proposition 3. Let fX,Y be a joint PDF. Then 

(a) Let fY be (any) marginal PDF of Y . Then  the  following  is  a  conditional

CDF of X given Y
x fX,Y (u, y) FX|Y (x | y) =  du,

fY (y) −∞ 

for every y satisfying the following: a) fY (y) > 0; b)  fX,Y (u, y) du <
∞; and  c)  fX,Y (u, y) du = fY (y). For  other  y we set FX|Y (x|y) =
1{x ≥ 0}. 

(b) The following is a conditional PDF of X given Y

fX,Y (x, y) fX|Y (x | y) = , 
fY (y) 

for every y such that fY (y) > 0. For  any  other  y we set fX|Y (x | y) =
1{0 ≤ x ≤ 1}. 

Proof. Joint measurability in (x, y) follows from Fubini (in both cases). 
Next, it is clear that PY -measure of all y’s satisfying conditions a)-c) is 1. Thus 
definition of FX|Y for other y’s is immaterial for (11). For “good” y’s from the 
DCT we have 

lim 
x↘x0

x 

fX,Y (u, y) du = 
−∞ 

x0

fX,Y (u, y) du , 
−∞ 

which shows that FX|Y (·|y) is right-continuous. FX|Y is clearly monotone. The

property limx→−∞ FX | Y (x | y) = 0 follows from the DCT again. Also 

∞ fX,Y (u, y) lim FX|Y (x | y) = du = 1, 
x→∞ fY (y) −∞ 

since the integral of the numerator is exactly fY (y), by  condition  c).

The proof concludes by a verification of (11) which is left as an exercise.

3.2 General case: arbitrary PX,Y

Theorem 2 (Disintegration). Let PX,Y be a probability measure on (R2 , B2).
Then there exists a regular branch of conditional probability PX|Y (·|y) of X 
given Y , i.e.  

PX,Y = PY × PX|Y .
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We will prove this result in Section 5.1. We note that similar disintegration 
works for product spaces other than R × R. E.g.  X can take values in any

complete metric space (not just R), while Y can be arbitrary. For the proof see 
[Cinlar, Section II.4.2]. 

4 EXAMPLE:  THE  BIVARIATE  NORMAL  DISTRIBUTION

Let us fix some ρ ∈ (− 1, 1) and consider the function, called the standard

bivariate normal PDF, 

Let X and Y be two jointly continuous random variables, defined on the same 
probability space, whose joint PDF is f . Therefore,  their  law  satisfies  

PX,Y (dx, dy) =  f (x, y) dx dy. 

Proposition 4. (a) The function f is a indeed a PDF (integrates to 1). 

(b) The marginal density of X and Y is N(0, 1), the  standard  normal  PDF.

(c) We have ρ(X, Y ) =  ρ. Also,  X and Y are independent iff ρ = 0.

(d) The conditional density of X, given  Y = y, is  N(ρy, 1 − ρ2). In  other

words,

is a regular branch of conditional probability for X given Y (i.e. PX,Y = 
N(0, 1) × K).

√ (x−µ)2
Proof: We will use repeatedly the fact that 1/( 2πσ) exp(− 2σ2 ) is a PDF

(namely, the PDF of the N(µ, σ2) distribution), and thus integrates to one. 

2 (a)-(b) We note that x2 − 2ρxy + y = x2 − 2ρxy + ρ2y2 + (1  − ρ2)y2, and

8 

f(x, y) =
1

2π
√

1− ρ2
exp

(

− x2 − 2ρxy + y2

2(1 − ρ2)

)

.

K(y, dx) =
1

√

2π(1 − ρ2)
e
− (x−ρy)2

2(1−ρ2) dx

√

1− ρ2Z , where Y ⊥⊥ Z are standardInterpretation of (d): X = ρY +
normals.
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as the PDF of the N(ρy, 1 − ρ2) distribution. Thus, the integral of this

density equals one, and we obtain 

exp(−y2/2)
fY (y) =  √ , 

2π 

∞ 
which is the standard normal PDF. Since fY (y) dy = 1, we  conclude−∞ 
that f (x, y) integrates to one, and is a legitimate joint PDF. Furthermore, 
we have verified that the marginal PDF of Y (and by symmetry, also the 
marginal PDF of X) is  the  standard  normal PDF,  N(0, 1). 

(c) We have Cov(X, Y ) =  E[XY ] − E[X]E[Y ] =  E[XY ], since  X and Y
are standard normal, and therefore have zero mean. We now have

E[XY ] =

Applying the same trick as above, we obtain for every y, 

But 

since this is the expected value for the N(ρy, 1 − ρ2) distribution. Thus,

E[XY ] = xyf(x, y) dx dy = yρyfY (y) dy = ρ y 2fY (y) dy = ρ, 

9 

obtain

fY (y) =

∫ ∞

−∞
f(x, y)dx =

exp
(

− (1−ρ2)y2

2(1−ρ2)

)

2π
√

1− ρ2

∫ ∞

−∞
exp

(

− (x− ρy
2

)2

2(1 − ρ )

)

dx

=
ex −y2/2)
2π

p(
√

1− ρ2

∫ ∞

−∞
exp

(

− (x− ρy
2

)2

2(1 − ρ )

)

dx

But we recognize

1
√

2π(1 − ρ2)

∫ ∞

−∞
exp

(

− (x− ρy
2

)2

2(1 − ρ )

)

dx

∫

∫ ∫ xyf(x, y) dy dx.

∫

xf(x, y)dx =
exp(

√

−y2/2)
2π 1− ρ2

∫ ∞

−∞
x exp

(

− (x− ρy
2

)2

2(1 − ρ )

)

dx.

1
∫ ∞ ( (x− ρy

2

)2

2(1 − ρ )

)

√

2π(1 − ρ2) −∞
x exp − dx = ρy,

∫ ∫ ∫ ∫
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since the integral is the second moment of the standard normal, which 
is equal to one. We have established that Cov(X, Y ) =  ρ. Since  the

variances of X and Y are equal to unity, we obtain ρ(X, Y ) =  ρ. If  X and 
Y are independent, then ρ(X, Y ) = 0, implying  that  ρ = 0. Conversely,

if ρ = 0, then  

and therefore X and Y are independent. Note that the condition ρ(X, Y ) =  
0 implies independence, for the special case of the bivariate normal, whereas 
this implication is not always true, for general random variables. 

(d) Let us now compute the conditional PDF. Using the expression for fY (y)

which we recognize as the N(ρy, 1 − ρ2) PDF.

We have discussed above the special case of a bivariate normal PDF,  in
which the means are zero and the variances are equal to one. More generally, 
the bivariate normal PDF is specified by five parameters, µ1, µ2, σ1, σ2, ρ, and

is given by 

where 

For this case, it can be verified that 

E[X] =  µ1, var(X) =  σ1
2 , E[Y ] =  µ2, var(Y ) =  σ2

2 , ρ(X, Y ) =  ρ.

10 

f(x, y) =
1

2π
exp

(

− x2 + y2

2

)

= fX(x)fY (y),

f(x, y)

fY (y)
fX|Y (x | y) =

=
1

2π
√

1− ρ2
exp

(

− x2 − 2ρxy + y2

2(1 − ρ2)

)√
2π exp(y2/2)

=
1

√

2π(1 − ρ2)
exp

(

− x2 − 2ρxy +
2

ρ2y2

2(1 − ρ )

)

=
1

√

2π(1 − ρ2)
exp

(

− (x− ρy
2

)2

2(1 − ρ )

)

,

f(x, y) =
1

2πσ1σ2
√

1− ρ2
exp

(

− 1

2
Q(x, y)

)

,

Q(x, y) =
1

1− ρ2

[(x− µ1)
2

σ21
− 2ρ

(x− µ1)

σ1

(y − µ2)

σ2
+

(y −
2

µ2)
2

σ2

]

.
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These properties can be derived by extending the tedious calculations in the 
preceding proof. 

There is a further generalization to more than two random variables, re-

sulting in the multivariate normal distribution. It will be carried out in a more 
elegant manner in a later lecture. 

5 CONDITIONAL  EXPECTATION

Recall that in the discrete case we defined E[X|Y = y] =  x∈R xpX|Y (x|y).
We have also defined E[X | Y ] to be a a random variable that takes the value

E[X | Y = y], whenever  Y = y and P[Y = y] > 0. The  general  case  is  more

delicate: 

Definition 3. Let X be integrable. A function g(y) is a conditional expecta-

tion, denoted E[X|Y = y], of  X given Y if

E[f (Y )X] = E[f (Y )g(Y )] (12) 

for every bounded measurable f . The  random  variable  g(Y ), denoted  E[X|Y ],
is also called a conditional expectation of Y given X. In  the  special  case  of  
X = 1B we write P[B|Y = y] or P[B|Y ] to denote a conditional probability

of B given Y . 

11 

∑



�

�

�

Theorem 3. Let X, Y be random variables defined on a common probability 
space and X integrable. 

(a) A conditional expectation E[X|Y ] exists.

(b) If g1 and g2 are two conditional expectations of X given Y then

P[g1(Y ) ̸= g2(Y )] = 0 . (13) 

(c) If K is a regular branch of conditional probability of X given Y then

g(y) = xK(y, dx) (14) 
R 

is a conditional expectation E[X|Y = y]. In  particular,  if  a  conditional  PDF

fX|Y exists then 

g(y) =  xfX|Y (x|y)dx .
R 

Note: Conditional expectation is not unique. However as (13) shows –  this

non-uniqueness is immaterial in most cases. Nevertheless, it is a mistake (and 
a very  common  one!)  to  ask  for  the  value  of  P[B|Y = 0], which  can  be  set

to anything unless P[Y = 0]  > 0. The  correct  question  is  to  find  a  function 
y �→ P[B|Y = y] (defined upto almost-sure equivalence).

Proof. (a) Let X = X+ − X− and define for any Borel set B

∫

∫

ν+(B) , E[1B(Y )X+]

which evidently defines a finite (E[X+] <∞) measure on (R,B). Furthermore,

if PY (B) = 0 then {Y ∈ B} has probability 0 and thus ν ≪ PY . By Radon-

Nikodym theorem there exists a measurable function g+ such that

E[1B(Y )X+] = E[g+(Y )1B(Y )].

Similarly, we may define ν−(B) via X− and apply Radon-Nikodym theorem to

get g−. Setting g = g+ − g− we have for every Borel set B:

E[1B(Y )X] = E[1B(Y )g(Y )].

Thus, g(Y ) verifies (12) for all f = 1B . By linearity of expectation (12) is also

verified for all simple functions. The general case of bounded f follows by the

DCT.

12
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(b) If g1(Y ) and g2(Y ) are two conditional expectations then setting

f (Y ) = 1{g1(Y ) > g2(Y )} − 1{g1(Y ) < g2(Y )}

from (12) we get 
E[|g1(Y )− g2(Y )|] = 0

implying g1 = g2 with PY -probability 1. 

(c) By definition if K is a regular branch of conditional expectation then

PX,Y = PY × K, which  by  Theorem  1  implies

φ(x, y)PX,Y (dx dy) = PY (dy) φ(x, y)K(y, dx) . 
R2 R R 

Taking φ(x, y) = xf(y) and using integrability of X property (12) follows by 
Fubini. 

Example. One might expect that when X and Y are jointly continuous, then E[X | Y ]
is a continuous random variable, but this is not the case. To see this, suppose that X 
and Y are independent, in which case E[X | Y = y] = E[X ], which  also  implies  that

E[X | Y ] = E[X ]. Thus,  E[X | Y ] takes a constant value, and is therefore a trivial case

of a discrete random variable. 

Example. We have a stick of unit length [0, 1], and  break  it  at  X , where  X is uniformly 
distributed on [0, 1]. Given  the  value  x of X , we  let  Y be uniformly distributed on [0, x], 
and let Z be uniformly distributed on [0, 1− x]. We  assume  that  conditioned  on  X = x,
the random variables Y and Z are independent. We are interested in the distribution of 
Y and Z , their  expected  values,  and  the  expected  value  of  their  product. 

It is clear from symmetry that Y and Z have the same marginal distribution, so we 
focus on Y . Let  us  first  find  the  joint  distribution  of  Y and X . We  have  fX (x) = 1, for
x ∈ [0, 1], and  fY |X (y | x) = 1/x, for  y ∈ [0, x]. Thus,  the  joint  PDF  is

1 1 
fX,Y (x, y) = fY |X (y | x)fX (x) =  · 1 =  , 0 ≤ y ≤ x ≤ 1.

x x 

We can now find the PDF of Y : 

1 1 1 1 1

fY (y) = fX,Y (x, y) dx = fX,Y (x, y) dx = dx = log x = log(1/y). 
x y 0 y y 

(check that this indeed integrates to unity). Integrating by parts,  we  then  obtain

1 1 1 
E[Y ] = yfY (y)dy = y log(1/y) dy = . 

0 0 4 

The above calculation is more involved than necessary. For a simpler argument, 
simply observe that E[Y | X = x] = x/2, since  Y conditioned on X = x is uniform on

13 

∫ ∫ ∫

∫ ∫ ∫

∫ ∫



� � � �

�

�

[0, x]. In  particular,  E[Y | X ] =  X/2. It  follows  that  E[Y ] =  E[E[Y | X ]] = E[X/2] =
1/4. 

For an alternative version of this argument, consider the random variable Y/X . 
Conditioned on the event X = x, this  random  variable  takes  values  in  the  range  [0, 1], 
is uniformly distributed on that range, and has mean 1/2. Thus,  the  conditional  PDF  of
Y/X  is not affected by the value x of X . This  implies  that  Y/X  is independent of X , 
and we have 

1 1 1 
E[Y ] =  E[(Y/X)X ] =  E[Y/X ] · E[X ] =  · = . 

2 2 4 

To find E[Y Z] we use the fact that, conditional on X = x, Y and Z are independent, 
and obtain 

E[Y Z] =  E E[Y Z  | X ] = E E[Y | X ] · E[Z | X ]
( 1 X 1 − X x(1 − x) 1 

= E · = dx = . 
2 2 0 4 24 

Exercise 1. Find the joint PDF of Y and Z . Find  the  probability  P(Y + Z ≤ 1/3).
Find E[X |Y ], E[X |Z], and  ρ(Y, Z). 

5.1 Other properties of E[·|Y ]

We note that many properties of Lebesgue integration carry over without change 
to conditional expectation: 

1. Monotonicity: X ≤ X ′ ⇒ E[X|Y ] ≤ E[X ′ |Y ]

2. Linearity: E[aX + bX ′ |Y ] =  aE[X|Y ] +  bE[X ′ |Y ]

3. MCT: 0 ≤ Xn ↗ X ⇒ E[Xn|Y ] ↗ E[X|Y ]

4. DCT: |Xn| ≤ Z , Z-integrable, Xn → X, then  ⇒ E[Xn|Y ] → E[X|Y ]

5. Fatou’s lemma: Xn ≥ 0, E[lim infn Xn|Y ] ≤ lim infn E[Xn|Y ]

6. Jensen’s inequality: f convex ⇒ E[f(X)|Y ] ≥ f(E[X|Y ])

Caution: Right-hand sides of each of these implications only hold almost surely! 
Proofs of all of these are simple: assume right-hand side is violated on a set 

E with P[Y ∈ E] > 0, then  using  1E and (12) construct a counter-example

to the uncoditional version of the same property. As an application we prove 
disintegration theorem: 
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E1 = {y : inf  gn(y) =  0}
n 

(15) 

E2 = {y : sup  gn(y) =  1} (16) 
n 

Thus, we may define:

1{x ≥ 0}, y ̸∈ E
FX|Y (x|y) =  

sup{gn(y) :  rn ≤ x}, y  ∈ E

Notice that 
y �→ FX|Y (x|y)

is measurable (as a countable supremum of measurable gn’s). And the function 

x �→ FX|Y (x|y)

is right-continuous, monotonically non-decreasing and growing from 0 to 1 
on R. Thus  by  Proposition  ?? function FX|Y is jointly measurable. Con-

sequently, it satisfies all requirements of a conditional CDF and  by  Proposi-

tion 2.(b) there exists a Markov kernel K(y, dx) satisfying (7). But then for 
every set (−∞, rn] × B we have 

(PY × K)((−∞, rn] × B) =  PY (dy)K(y, (−∞, rn]) (17) 
B 

= gn(y)PY (dy) (18) 
B 

= E[1(−∞,rn](X)1B (Y )] (19) 

= PX,Y ((−∞, rn] × B) , (20) 

15 

Proof of Theorem 2. Let {rn}∞=1 be enumeration of rational numbers Q.

Denote

gn(y) , P[X ∈ (−∞; rn] |Y = y] .

By monotonicity property for any k and n such that rk ≤ rn we have

P[gk(Y ) ≤ gn(Y )] = 1

Therefore the set

E0 = {y : gk(y) ≤ gn(y) ∀(k, n) : rk ≤ rn}
has PY -measure 1. Similarly, sets

both also have PY -measure 1. All together, for every y in the set

E , E0 ∩ E1 ∩ E2

closure of the sequence of points (rn, gn(y)) on R × [0, 1] is a graph of a CDF.

{
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where first step is by (7), second by definition of FX|Y (rn|y) and since PY (E) =
1, third  is  by  definition  of  gn and (12), and fourth is just by definition of PX,Y . 

Since sets (−∞, rn] × B form a generating p-system for B × B we conclude

PX,Y = PY × K

which proves the Theorem. 

5.2 Optimality properties of conditional expectations 

The conditional expectation E[X | Y ] can be viewed as an estimate of X, based

on the value of Y . In  fact,  it  is  an  optimal  estimate,  in  the  sense  that  the  mean

square of the resulting estimation error, X − E[X | Y ], is  as  small  as  possible.

Theorem 4. Suppose that E[X2] < ∞. Then,  for  any  measurable  function

g : R → R, we  have  

Proof: We have 

The inequality above is obtained by noticing that the term E (X − g(Y ))2 is

always nonnegative, and that the term E[(X − E[X | Y ])(E[X | Y ] − g(Y )) 
is of the form E[(X − E[X | Y ])ψ(Y ) for ψ(Y ) =  E[X | Y ] − g(Y ), and  is
therefore equal to zero, by Eq. (12). 

Notice that the preceding proof only relies on the property (12). As we have 
discussed, we can view this as the defining property of conditional expectations, 
for general random variables. It follows that the preceding theorem is true for 
all kinds of random variables. 

6 MIXED  VERSIONS  OF  BAYES’  RULE

Let X be an unobserved random variable, with known CDF, FX . We  observe

the value of a related random variable, Y , whose  distribution  depends  on  the

value of X. This  dependence  can  be  captured  by  a  conditional  CDF,  FY |X . 
On the basis of the observed value y of Y , would  like  to  make  an  inference  on

16 

E
[

(X − E[X |Y ])2
]

≤ E
[

(X − g(Y ))2
]

.

E
[

(X − g(Y ))2
]

= E[(X − E[X |Y ])2
]

+ E
[

(E[X |Y ]− g(
]

Y ))2
]

+2E[(X − E[X |Y
]

])(E[X |Y ]− g(Y ))

≥ E[(X − E[X |Y ])2 .
[ ]
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the unknown value of X. While  sometimes,  this  inference  aims  at  a  numerical

estimate for X, the  most  complete  answer, which  includes  everything  that  can 
be said about X, is  the  conditional  distribution  of  X, given  Y . This  conditional

distribution can be obtained by using an appropriate form of Bayes’ rule. 
When X and Y are both discrete, Bayes’ rule takes the simple form 

pX (x)pY |X (y | x) pX (x)pY |X (y | x)
pX|Y (x | y) =  = . 

pY (y) ′ pX (x ′)pY |X (y | x ′)x 

When X and Y are both continuous, Bayes’ rule takes a similar form, 

fX (x)fY |X (y | x) fX(x)fY |X (y | x)
fX|Y (x | y) =  = , 

fY (y) fX (x ′)fY |X (y | x ′) dx

which follows readily from the definition of the conditional PDF. 
It remains to consider the case where one random variable is discrete and 

the other continuous. Suppose that K is a discrete random variable and Z is a 
continuous random variable. We describe their joint distribution in terms of a 
function fK,Z(k, z) that satisfies 

z 

P(K = k, Z ≤ z) = fK,Z(k, t) dt. 
−∞ 

We then have 
∞ 

pK(k) = P(K = k) = fK,Z(k, t) dt, 
−∞ 

and3

z z 

FZ (z) = P(Z ≤ z) = fK,Z(k, t) dz = fK,Z(k, t) dz, 
−∞ −∞ k k

which implies that 
fZ(z) = fK,Z(k, z), 

k 

is the PDF of Z . 
Note that if P(K = k) > 0, then

z fK,Z(k, t) 
P(Z ≤ z | K = k) = dt, 

pK(k) −∞ 

3The interchange of the summation and the integration can be rigorously justified, because the 
terms inside are nonnegative. 
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and therefore, it is reasonable to define 

fZ|K(z | k) = fK,Z(k, z)/pK (k).

Finally, for z such that fZ(z) > 0, we  define  pK|Z(k | z) = fK,Z(k, z)/fZ (z),
and interpret it as the conditional probability of the event K = k, given  that  
Z = z. (Note  that  we  are  conditioning  on  a  zero  probability  event;  a more accu-

rate interpretation is obtained by conditioning on the event z ≤ Z ≤ z + δ, and

let δ → 0.) With these definitions, we have 

fK,Z(k, z) = pK(k)fZ|K(z | k) = fZ(z)pK|Z(k | z),

for every (k, z) for which fK,Z(k, z) > 0. By  rearranging,  we  obtain  two  more

versions of the Bayes’ rule: 

fZ(z)pK|Z(k | z) fZ (z)pK|Z(k | z)
fZ|K(z | k) =  = , 

pK(k) fZ(z ′)pK|Z(k | z ′) dz′

and 
pK(k)fZ|K(z | k) pK(k)fZ|k(z | k)

pK|Z(k | z) =  = . 
fZ(z) pK(k′)fZ|K(z | k′)k ′ 

Note that all four versions of Bayes’ rule take the exact same form; the only 
difference is that we use PMFs and summations for discrete random variables, 
as opposed to PDFs and integrals for continuous random variables. 
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