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The material in these notes can be found in practically every textbook that 

includes basic measure theory, although the order with which various properties 

are proved can be somewhat different in different sources. 

PRELIMINARIES 

R 

The objective of these notes is to define the integral g dµ [sometimes also 
R 

denoted g(!) dµ(!)] of a measurable function g : → R, defined on a 

measure space ( , F , µ). We remind that R̄ is the set of real values extended by 

∞ and −∞. 

Special cases: 

(a) If ( , F , P) is a probability space and X : → R is measurable (i.e., 
R 

an extended-valued random variable), the integral X dP is also denoted 

E[X], and is called the expectation of X. 

(b) If we are dealing with the measure space (R, B, �), where B is the Borel 
R 

˙-field and � is the Lebesgue measure, the integral g d� is often denoted 
R 

as g(x) dx, and is meant to be a generalization of the usual integral 

encountered in calculus. 
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R 

The program: We will define the integral g dµ for progressively general 

classes of measurable functions g: 

(a) Finite nonnegative functions g that take finitely many values (“simple 

functions”). In this case, the integral is just a suitably weighted sum of 

the values of g. When g is in fact a random variable, the we recognize g 
as a discrete random variable since its range is finite. 

(b) Nonnegative functions g. Here, the integral will be defined by approxi-

mating g from below by a sequence of simple functions. 

(c) General functions g. This is done by decomposing g in the form g = 
R 

g+ −g−, where g+ and g− are nonnegative functions, and letting g dµ = 
R R 

g+ dµ − g− dµ. 

We will be focusing on the integral over the entire set . The integral over a 

(measurable) subset B of is defined by letting 

Z Z 

g dµ = (1B g) dµ. 
B 

Here 1B is the indicator function of the set g, so that 

ˆ 

g(!), if ! ∈ B, 
(1Bg)(!) = 

0, if ! ∈/ B. 

Throughout, we will use the term “almost everywhere” to mean “for all ! 
outside a zero-measure subset of .” For the special case of probability mea-

sures, we will often use the alternative terminology “almost surely,” or “a.s.” for 

short. Thus, if X and Y are random variables, we have X = Y , a.s., if and only 
� � 

if P(X = Y ) = P {! : X(!) 6= Y (!)} = 0. 

In the sequel, an inequality g ≤ h between two functions will be interpreted 

as “g(!) ≤ h(!), for all ! ∈ .” Similarly, “g ≤ h, a.e.,” means that “g(!) ≤ 
h(!), for all ! outside a zero-measure set.” The notation “gn ↑ g” will mean 

that for every !, the sequence gn(!) is monotone nondecreasing and converges 

to g(!). Finally, “gn ↑ g, a.e.,” will mean that the monotonic convergence of 

gn(!) to g(!) holds for all ! outside a zero-measure set. 

THE MAIN RESULT 

Once the construction is carried out, integrals of nonnegative functions will al-

ways be well-defined. For general functions, integrals will be left undefined 

only when an expression of the form ∞−∞ is encountered. 

2 

Ω

Ω



3 

The following properties will turn out to be true, whenever the integrals or 

expectations involved are well-defined. On the left, we show the general version; 

on the right, we show the same property, specialized to the case of probability 

measures. In property 8, the convention 0 · ∞ = 0 will be in effect. 
R 

1. 1B dµ = µ(B) 
R 

2. g ≥ 0 ⇒ g dµ ≥ 0 
R 

3. g = 0, a.e. ⇒ g dµ = 0 
R R 

4. g ≤ h ⇒ g dµ ≤ h dµ 
R R 

(assuming both g and h exist) 
R R 

4 ′ g ≤ h, a.e. ⇒ g dµ ≤ h dµ 
R R 

5. g = h, a.e. ⇒ g dµ = h dµ 
R 

and both exist or do not exist simultaneously 
R 

6. [g ≥ 0, a.e., and g dµ = 0] ⇒ g = 0, a.e. 
R R R 

7. (g + h) dµ = g dµ + h dµ 

(assuming RHS is well-defined) 
R R 

8. (ag) dµ = a g dµ 
R R 

9. 0 ≤ gn ↑ g ⇒ gn dµ ↑ g dµ 
R R 

9 ′ . 0 ≤ gn ↑ g, a.e. ⇒ gn dµ ↑ g dµ 
R 

10. g ≥ 0 ⇒ �(B) = g dµ is a measure 
B 

Property 7, the linearity of expectations is central. 

E[1B ] = P(B) 

X ≥ 0 ⇒ E[X] ≥ 0 

X = 0, a.s. ⇒ E[X] = 0 

X ≤ Y ⇒ E[X] ≤ E[Y ] 

X ≤ Y, a.s. ⇒ E[X] ≤ E[Y ] 

X = Y, a.s. ⇒ E[X] = E[Y ] 

[X ≥ 0, a.s., and E[X] = 0] ⇒ X = 0, a.s. 

E[X + Y ] = E[X] + E[Y ] 

E[aX] = aE[X] 

0 ≤ Xn ↑ X, ⇒ E[Xn] ↑ E[X] 

0 ≤ Xn ↑ X, a.s. ⇒ E[Xn] ↑ E[X] 
R 

[f ≥ 0 and f dP = 1] 
R 

⇒ �(B) = f dP is a probability measure 
B 

Also, Property 9, and its 

generalization, property 9 ′ , is known as the Monotone Convergence Theorem 

(MCT), and is a cornerstone of integration theory. 

THE LIMITATIONS OF THE RIEMANN INTEGRAL 

Before proceeding, it is worth understanding why the traditional integral en-

countered in calculus is not adequate for our purposes. Let us recall the defini-
R b 

tion of the (Riemann) integral g(x) dx. We subdivide the interval [a, b] using 
a 

a finite sequence ˙ = (x1, x2, . . . , xn) of points that satisfy a = x1 < x2 < 
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· · · < xn = b, and define 

n−1 
� � 

X 

U(˙) = max g(x) · (xi+1 − xi), 
xi≤x<xi+1

i=1 

n−1 
� � 

X 

L(˙) = min g(x) · (xi+1 − xi). 
xi≤x<xi+1

i=1 

Thus, U(˙) and L(˙) are approximations of the “area under the curve g,” from 
R b 

above and from below, respectively. We say that the integral g(x) dx is well-
a 

defined, and equal to a number c, if 

lim sup L(˙) = lim inf U(˙) = c, 
˙ ˙ 

where lim sup and lim inf are taken with respect to sequences of partitions ˙ = 
(x1, x2, . . . , xn) whose resolution max0≤i≤n−1(xi+1 − xi) converges to zero. 

In this case, we also say that g is Riemann-integrable over [a, b]. Intuitively, we 

want the upper and lower approximants U(˙) and L(˙) to agree, in the limit of 

very fine subdivisions of the interval [a, b]. 
It is known that if g : R → R is Riemann-integrable over every inter-

val [a, b], then g is continuous almost everywhere (i.e., there exists a set S of 

Lebesgue measure zero, such that g is continuous at every x ∈/ S). This is a 

severe limitation on the class of Riemann-integrable functions. 

Example. Let Q be the set of rational numbers in [0, 1]. Let g = 1Q. For any ˙ = 

(x1, x2, . . . , xn), and every i, the interval [xi, xi+1) contains a rational number, and 

also an irrational number. Thus, maxxi�x<xi+1 g(x) = 1 and minxi�x<xi+1 g(x) = 0. 

It follows that U(˙) = 1 and L(˙) = 0, for all ˙, and sup˙ L(˙) =6 inf˙ U(˙). 

Therefore 1Q is not Riemann integrable. On the other hand if we consider a uniform 

distribution over [0, 1], and the binary random variable 1Q , we have P(1Q = 1) = 0, 
R 

and we would like to be able to say that E[X ] = 1Q(x) dx = 0. This indicates [0,1] 

that a different definition is in order. 

THE INTEGRAL OF A NONNEGATIVE SIMPLE FUNCTION 

A function g : → R is called simple if it is measurable, finite- and takes only 

finitely many different values. In particular, a simple function can be written as 

k 
X

g(!) = ai1Ai (!), ∀ ! ∈ , (1) 

i=1 
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where k is a (finite) nonnegative integer, the coefficients ai ∈ R are real values 

and the Ai are measurable sets. 

Note that a simple function can have several representations of the form 

(1). For example, 1[0,2] and 1[0,1] + 1(1,2] are two representations of the same 

function. For another example, note that 1[0,2] +1[1,2] = 1[0,1) +2 · 1[1,2]. On the 

other hand, if we require the ai to be distinct and the sets Ai to form a partition 

of , it is not hard to see that there is only one possible representation, which 

we will call the canonical representation. More concretely, in the canonical 

representation, we let {a1, . . . , ak} be the range of g, where the ai are distinct, 

and Ai = {! | g(!) = ai}. 

Definition 1. If g is a simple function, of the form (1), its integral is defined 

by 
Z k 

X

g dµ = aiµ(Ai). 
i=1 

(If ai = 0 and µ(Ai) = ∞, we assume aiµ(Ai) = 0.) 

Before continuing, we need to make sure that Definition 1 is sound, in the 

following sense. If we consider two alternative representations of the same sim-
R 

ple function, we need to ensure that the resulting value of g dµ is the same. 

Technically, we need to show the following: 

k m k m 
X X X X

if ai1Ai = bi1Bi , then aiµ(Ai) = biµ(Bi). 
i=1 i=1 i=1 i=1 

This is left as an exercise for the reader. 

Example. We have 1[0,2] + 1[1,2] = 1[0,1) + 2 · 1[1,2]. The first representation leads 

to µ([0, 2]) + µ([1, 2], the second to µ([0, 1)) + 2µ([1, 2]). Using the fact µ([0, 2]) = 

µ([0, 1)) + µ([1, 2]) (finite additivity), we see that the two values are indeed equal. 

For the case where the underlying measure is a probability measure P, a 

simple function X : → R is called a simple random variable, and its integral 
R 

X dP is also denoted as E[X]. We then have 

k 
X

E[X] = aiP(Ai). 
i=1 

If the coefficients ai are distinct and exhaust all the possible values of X, then 
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by taking Ai = {! | X(!) = ai}, we obtain 

k k 
X X

E[X] = aiP({! | X(!) = ai}) = aiP(X = ai), 
i=1 i=1 

which agrees with the elementary definition of E[X] for discrete random vari-

ables. 

Note, for future reference, that the sum or difference of two simple functions 

is also simple. 

4.1 Verification of various properties for the case of simple functions 

For the various properties listed in Section 2, we will use the shorthand “property 

S-A” and “property N-A”, to refer to “property A for the special case of nonneg-

ative simple functions” and “property A for nonnegative measurable functions,” 

respectively. 

We note a few immediate consequences of the definition. For any B ∈ F , 
R 

The function 1B is simple and 1B dµ = µ(B), which verifies property 1. In 

particular, when Q is the set of rational numbers and µ is Lebesgue measure, 
R 

we have 1Q dµ = µ(Q) = 0, as desired. Note that a nonnegative simple 

function has a representation of the form (1) with all ai nonnegative. It follows 
R 

that g dµ ≥ 0, which verifies property S-2. 

Suppose now that a simple function satisfies g = 0, a.e. Then, it has a 
Pk 

canonical representation of the form g = , where µ(Ai) = 0, for i=1 ai1Ai 
R 

every i for which ai =6 0. Definition 1 implies that g dµ = 0, which verifies 

property S-3. 

Let us now verify the linearity property S-7. Let g and h be nonnegative 

simple functions. Using canonical representations, we can write 

k m 
X X

g = ai1Ai , h = bj1Bj , 
i=1 j=1 

where the disjoint sets Ai or the sets Bj aform a partition of . Then, the sets 

Ai ∩ Bj are also disjoint, and form a partition of . We have 

k m 
XX

g + h = (ai + bj )1Ai∩Bj . 
i=1 j=1 
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Therefore, 

Z k m 
XX

(g + h) dµ = (ai + bj )µ(Ai ∩ Bj) 
i=1 j=1 

k m m k 
X X X X

= ai µ(Ai ∩ Bj) + bj µ(Ai ∩ Bj) 
i=1 j=1 j=1 i=1 

k m 
X X

= aiµ(Ai) + bj µ(Bj) 
i=1 j=1 
Z Z 

= g dµ + h dµ. 

(The first and fourth equalities follow from Definition 1. The third equality made 

use of finite additivity for µ. and the fact that the sets Ai or the sets Bj form a 

partition of .) 

Property S-8 is an immediate consequence of Definition 1. We only need 
R 

to be careful for the case where g dµ = ∞ and a = 0. We have ag = 0 and so 
R R 

(ag)dµ = 0. On the other hand a gdµ = 0 · ∞. We have agreed to assume 

that 0 · ∞ = 0 and under this convention the identity is verified. 

By combining properties S-7 and S-8, with a = −1 we see that, for simple 
R R R 

functions g and h we have (g − h) dµ = g dµ − h dµ. 

We now verify property S-4 ′ , which also implies property S-4 as a special 

case. Suppose that g ≤ h, a.e. We then have h = g + q, for a simple function 

q such that q ≥ 0, a.e. In particular, q = q− − q−, where q+ ≥ 0, q− ≥ 0, 

and q− = 0, a.e. Thus, h− = g + q+ − q−. Note that q, q+, and q− are all 

simple functions. Using the linearity property S-7, and then properties S-3, S-2, 

we obtain 
Z Z Z Z Z Z Z 

h dµ = g dµ + q+ dµ − q− dµ = g dµ + q+ dµ ≥ g dµ. 

We next verify property S-5. If g = h, a.e., then we have both g ≤ h, a.e., 
R R R R 

and h ≤ g, a.e. Thus, g dµ ≤ h dµ, and g dµ ≥ h dµ, which implies 
R R 

that g dµ = h dµ. 
R 

We finally verify property S-6. Suppose that g ≥ 0, a.e., and g dµ = 0. 

We write g = g+ − g−, where g+ ≥ 0 and g− ≥ 0. Then, g− = 0, a.e., 
R R R R 

and g− dµ = 0. Thus, using property S-7, g+ dµ = g dµ + g− dµ = 
0. Note that g+ is simple. Hence, its canonical representation is of the form 

Pk Pk g+ = , with ai ≥ 0. Since = 0, it follows that i=1 ai1Ai i=1 aiµ(Ai) 
µ(Ai) = 0, for every i such that ai > 0. From finite additivity, we conclude 
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5 

that µ(∪iAi) = 0, where the union ∪iAi is over i such that ai > 0. Therefore, 

g+ = 0, a.e., and also g = 0, a.e. 

THE INTEGRAL OF A NONNEGATIVE FUNCTION 

The integral of a nonnegative function g will be defined by approximating g 
from below, using simple functions. 

Definition 2. For a nonnegative (extended-valued) measurable function g : 
→ [0, ∞], we let S(g) be the set of all nonnegative simple (hence auto-

matically measurable) functions q that satisfy 0 ≤ q ≤ g, and define 

Z Z 

g dµ = sup q dµ. 
q∈S(g) 

We will now verify that with this definition, properties N-2 to N-10 are all 

satisfied. This is easy for some (e.g., property N-2). Most of our effort will 

be devoted to establishing properties N-7 (linearity) and N-9 (monotone conver-

gence theorem). 

The arguments that follow will make occasional use of the following conti-

nuity property for monotonic sequences of measurable sets Bi: If Bi ↑ B, then 

µ(Bi) ↑ µ(B). This property was established in the notes for Lecture 1, for the 

special case where µ is a probability measure, but the same proof applies to the 

general case. 

5.1 Verification of some easy properties 

Throughout this subsection, we assume that g is measurable and nonnegative. 
R 

Property N-2: For every q ∈ S(g), we have q dµ ≥ 0 (property S-2). Thus, 
R R 

g dµ = sup q dµ ≥ 0. q∈S(g) 

Property N-3: If g = 0, a.e, and 0 ≤ q ≤ g, then q = 0, a.e. Therefore, 
R R 

q dµ = 0 for every q ∈ S(g) (by property S-3), which implies that g dµ = 0. 

Property N-4: Suppose that 0 ≤ g ≤ h. Then, S(g) ⊂ S(h), which implies 

that 
Z Z Z Z 

g dµ = sup q dµ ≤ sup q dµ = h dµ. 
q∈S(g) q∈S(h) 

Property N-5: Suppose that g = h, a.e. Let A = {! | g(!) = h(!)}, and 

note that the complement of A has zero measure, so that q = 1Aq, a.e., for any 
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function q. Then, 

Z Z Z Z 

g dµ = sup 
q∈S(g) 

Z 

q dµ = sup 
q∈S(g) 
Z 

1Aq dµ ≤ sup 
q∈S(1Ag) 

q dµ 

≤ sup 
q∈S(h) 

q dµ = h dµ. 

R R 

A symmetrical argument yields h dµ ≤ g dµ. 

Exercise: Justify the above sequence of equalities and inequalities. 

′ Property N-4 ′ : Suppose that g ≤ h, a.e. Then, there exists a function g such 
R R 

′ ′ that g ≤ h and g = g , a.e. Property N-5 yields g dµ = g ′ dµ. Property N-4 
R R R R 

yields g ′ dµ ≤ h dµ. These imply that g dµ ≤ h dµ. 

Property N-6: Suppose that g ≥ 0 but the relation g = 0, a.e., is not true. We 
R 

will show that g dµ > 0. Let B = {! | g(!) > 0}. Then, µ(B) > 0. Let 

Bn = {! | g(!) > 1/n}. Then, Bn ↑ B and, therefore, µ(Bn) ↑ µ(B) > 0. 

This shows that for some n we have µ(Bn) > 0. Note that g ≥ (1/n)1Bn . 

Then, properties S-4, S-8, and 1 yield 

Z Z Z 

1 1 1 
g dµ ≥ · 1Bn dµ = 1Bn dµ = µ(Bn) > 0. 

n n n 

Property N-8, when a ≥ 0: If a = 0, the result is immediate. Assume that 

a > 0. It is not hard to see that q ∈ S(g) if and only if aq ∈ S(ag). Thus, 

Z Z Z Z Z 

(ag) dµ = sup q dµ = sup (aq) dµ = sup (aq) dµ = a q dµ. 
q∈S(ag) aq∈S(ag) q∈S(g) 

5.2 Proof of the Monotone Convergence Theorem 

We first provide the proof of property N-9, for the special case where g is equal 

to a simple function q, and then generalize. 

Let q be a nonnegative simple function, represented in the form q = 
Pk 

, i=1 ai1Ai 

where the ai are finite nonnegative numbers, and where the measurable sets Ai 

form a partition of . Let gn be a sequence of nonnegative measurable (not 
R 

necessarily simple) functions such that gn ↑ q. The limit limn gndµ exists by 
R 

monotonicity. We need to show that this limit is qdµ. We distinguish between 
R 

two different cases, depending on whether q dµ is finite or infinite. 
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R 

(i) Suppose that q dµ = ∞. This implies that there exists some i for which 

ai > 0 and µ(Ai) = ∞. Fix such an i, and let 

Bn = {! ∈ Ai | gn(!) > ai/2}. 

For every ! ∈ Ai, there exists some n such that gn(!) > ai/2. Therefore, 

Bn ↑ Ai. From the continuity of measures, we obtain µ(Bn) ↑ ∞. Now, 

note that gn ≥ (ai/2)1Bn . Then, using property N-4, we have 
Z Z 

ai 
gn dµ ≥ µ(Bn) ↑ ∞ = q dµ. 

2 
R 

(ii) Suppose now that q dµ < ∞. Then, µ(Ai) < ∞, for all i ∈ S for which 

ai > 0. Let 
[ 

A = Ai. 

{i: ai>0} 

By finite additivity, we have µ(A) < ∞. Let us fix a positive integer r 
such that 1/r < ai for every i such that ai > 0. Let 

Bn = ! ∈ A | gn(!) ≥ q(!) − (1/r) . 

We observe that Bn ↑ A and, by continuity, µ(Bn) ↑ µ(A). Since µ(A) = 
µ(Bn) + µ(A \ Bn), and µ(A) < ∞, this also yields µ(A \ Bn) ↓ 0. 

Note that 1Aq = q, a.e. Using properties, S-5 and S-7, we have 
Z Z Z Z 

q dµ = 1Aq dµ = 1Bn q dµ + 1A\Bn q dµ. (2) 

For ! ∈ Bn, we have gn(!) + (1/r) ≥ q(!). Thus, gn + (1/r)1Bn ≥ 
1Bn q. Using properties N-4 and S-7, together with Eq. (2), we have 
Z Z Z 

1 
Z Z 

gn dµ + 1Bn dµ ≥ 
r 

1Bn q dµ = q dµ − 1A\Bn q dµ 
Z 

≥ q dµ − aµ(A \ Bn), 

where a = maxi ai. By taking the limit as n → ∞, we obtain 
Z Z 

1 
lim gn dµ + µ(A) ≥ q dµ. 
n→∞ r 

Since this is true for every r > 1/(mini ai), we must have 
Z Z 

lim gn dµ ≥ q dµ. 
n→∞ 

R R 

On the other hand, we have gn ≤ q, so that gn dµ ≤ q dµ, and 
R R 

limn→∞ gn dµ ≤ q dµ. 
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We now turn to the general case. We assume that 0 ≤ gn ↑ g. Suppose that 

q ∈ S(g), so that 0 ≤ q ≤ g. We have 

0 ≤ min{gn, q} ↑ min{g, q} = q. 

Therefore, 

Z Z Z 

lim gn dµ ≥ lim min{gn, q} dµ = q dµ. 
n→∞ n→∞ 

(The inequality above uses property N-4; the equality relies on the fact that we 

already proved the MCT for the case where the limit function is simple.) By 

taking the supremum over q ∈ S(g), we obtain 

Z Z Z 

lim gn dµ ≥ sup q dµ = g dµ. 
n→∞ q∈S(g) 

R R 

On the other hand, we have gn ≤ g, so that gn dµ ≤ g dµ. Therefore, 
R R 

limn→∞ gn dµ ≤ g dµ, which concludes the proof of property N-9. 

To prove property 9 ′ , suppose that gn ↑ g, a.e. Then, there exist functions 
′ ′ ′ ′ ′ ′ g and g , such that gn = g , a.e., g = g , a.e., and g ↑ g . By combining n n n 

properties N-5 and N-9, we obtain 

Z Z Z Z 

′ lim gn dµ = lim gn dµ = g ′ dµ = g dµ. 
n→∞ n→∞ 

5.3 Approximating g from below using “special” simple functions 
R 

Let g be a nonnegative measurable function. From the definition of g dµ, 
R R 

it follows that there exists a sequence qn ∈ S(g) such that qn dµ → q dµ. 

This does not provide us with much information on the sequence qn. In contrast, 

the construction that follows provides us with a concrete way of approximating 
R 

g dµ. 

For any positive integer r, we define a function gr : → R by letting 

( 

r, if g(!) ≥ r 
gr(!) = i i i + 1 

, if ≤ g(!) < , i = 0, 1, . . . , r2r − 1 
2r 2r 2r 

In words, the function gr is a quantized version of g. For every !, the value of 

g(!) is first capped at r, and then rounded down to the nearest multiple of 2−r . 

We note a few properties of gr that are direct consequences of its definition. 

(a) For every r, the function gr is simple (and, in particular, measurable). 
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(b) We have 0 ≤ gr ↑ g; that is, for every !, we have gr(!) ↑ g(!). 

(c) If g is bounded above by c and r ≥ c, then |gr(!) − g(!)| ≤ 1/2r , for 

every !. 

Statement (b) above gives us a transparent characterization of the set of mea-

surable functions. Namely, a nonnegative function is measurable if and only if 

it is the monotonic and pointwise limit of simple functions. Indeed, we have 

established in earlier lectures that pointwise limits of measurable functions are 

measurable. On the other hand, we just showed that every measurable function 

is a pointwise monotone limit of simple functions. (While the discussion above 

was about non-negative functions, see how you can extend it to the general case). 
R R 

Furthermore, the MCT indicates that gr dµ ↑ g dµ, for this particular choice 

of simple functions gr. (In an alternative line of development of the subject, 
R R 

some texts start by defining g dµ as the limit of gr dµ.) 

5.4 Linearity 

We now prove linearity (property N-7). Let gr and hr be the approximants of 

g and h, respectively, defined in Section 5.3. Since gr ↑ g and hr ↑ h, we have 

(gr + hr) ↑ (g + h). Therefore, using the MCT and property S-7 (linearity for 

simple functions), 

Z Z 

(g + h) dµ = lim (gr + hr) dµ 
r→∞ 

Z Z 

� � 

= lim gr dµ + hr dµ 
r→∞ 

Z Z 

= lim gr dµ + lim hr dµ 
r→∞ r→∞ 
Z Z 

= g dµ + h dµ. 

5.5 Using an integral to define a measure 

In order to prove the last property (property N-10) one uses countable additivity 

for the measure µ, a limiting argument based on the approximation of g by 

simple functions, and the MCT. The detailed proof is left as an exercise for the 

reader. 
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6 THE GENERAL CASE 

Consider now a measurable function g : → R. Let A+ = {! | g(!) > 0} and 

A− = {! | g(!) < 0}; note that these are measurable sets. Let g+ = g · 1A+

and g− = −1A
− g; note that these are nonnegative (possibly extended-valued) 

measurable functions. We then have g = g+ − g−, and we define 

Z Z Z 

g dµ = g+ dµ − g− dµ. 

R R 

The integral g dµ is well-defined, as long as we do not have both g+ dµ and 
R 

g− dµ equal to infinity. 

With this definition, verifying properties 3-6 and 8 is not too difficult, and 

there are no surprises. We decompose the functions g and h into negative and 

positive parts, and apply the properties already proved for the nonnegative case. 

The details are left as an exercise. The only extra work is needed for property 7. 

It is clear, however, that establishing property 7 is equivalent to property N-7 

and the following statement: 

Z Z Z 

g ≥ 0, h ≥ 0 ⇒ (g − h)dµ = gdµ − hdµ (3) 

In the special case g ≥ h property (3) is just a consequence of property N-7: 

Z Z Z Z 

g ≥ h ≥ 0 ⇒ gdµ = (g − h + h)dµ = (g − h)dµ + hdµ . (4) 

The general case of (3) can be shown via the following argument: 

Z Z Z 

(g − h)dµ , (g − h)1{g > h}dµ − (h − g)1{g ≤ h}dµ (5) 

Z Z 

= g1{g > h}dµ − h1{g > h}dµ 
Z Z 

+ g1{g ≤ h}dµ − h1{g ≤ h}dµ (6) 

Z Z 

= gdµ − hdµ , (7) 

where (6) is from (4) and (7) is from 

Z Z Z 

g1{g > h}dµ + g1{g ≤ h}dµ = gdµ 

by property N-7. 
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