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COMBINATORIAL PROBABILITY 

In this section we will briefly review some combinatorial concepts, which come 

in handy when performing actual computations with discrete random variables. 

We start with two results from analysis: 

1. Exponential function as a limit, for all x ∈ R, 

� � n x x lim 1 + = e . 
n!1 n 

2. Stirling bounds on factorial 

� � � � √ n n √ n n 1

2ˇn ≤ n! ≤ 2ˇn e 12n . 
e e 

Definition 1. Let be a finite sample space. The discrete uniform probability 

space is ( , 2 , P), where 

1 
P({!}) = ∀ ! ∈ . | |
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Moreover, for any event A ⊂ , by finite additivity, 

|A| 
P(A) = . | |

Such assignments form the foundation of combinatorial probability wherein one 

is usually interested in counting the number of elements satisfying a particular 

criterion. This counting is often done following an iterative procedure. We 

collect some specific examples. 

Example 1 (Permutations). A permutation of the numbers 1, . . . , n is an isomor-

phism ˇ : {1, . . . , n} → {1, . . . , n}. Proceeding iteratively, there are n choices 

for ˇ(1), n − 1 choices for ˇ(2), · · · , and 1 choice for ˇ(n). Therefore, there 

are n · (n − 1) · · · 2 · 1 = n! possible permutations. 

Example 2 (Choices). Given a collection of n distinct objects there are n · (n −
1) · · · (n − (k − 2)) · (n − (k − 1)) = n!/(n − k)! ways to select k of those 

objects in a particular order. Moreover, there are n!/((n − k)!k!) ways to select 

k of those objects ignoring order, as k! represents all possible ways to arrange 
� � 

n k objects. This last expression n!/((n − k)!k!) is denoted and referred to as 
k 

n choose k. 

Example 3 (Birthday Paradox). Given n individuals, what is the probability 

that no two have the same birthday? Let A = “All individuals in a group of size 

n have unique birthdays”. Assume that an individual’s birthday is independent 

of all other birthdays and occurs equally likely on any calendar day (non leap 

year), i.e. birthdays are independent and identically distribution uniformly on 

{1, . . . , 365}. A is the number of ways to uniquely select n birthdays, with 

|A| = 365 · 364 · · · (365 − (n − 1)), and the sample space is {1, . . . , 365}n . 
Therefore, the resulting probability is 

|A| 365! 
P(A) = = . | | 365n(365 − n)! 

For n = 23, P(A) = .4927, so it is more likely than two individuals will have 

the same birthday. 

Example 4 (Mafia Game). Suppose that n members of the mafia are in one room 

and simultaneously shoot another mafia member uniformly at random (possibly 

themselves). Let A = “Every member is shot”. Let = {(!1, . . . , !n)} be 

the set of assignments of mafia members to the people they shoot, i.e. !i ∈
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{1, . . . , n} is the target of the i-th mafia member. The event A occurs for all 

! ∈ that are permutations. Therefore, the corresponding probability is 

√ � � 1 n n �√ � |A| n! 2ˇn e 12n

P(A) = = ≤ e ≤ 2ˇne e −n . | | nn nn 

Hence, for large n, the event A is very unlikely. 

Example 5 (Mafia Survival). Under the setting of the Mafia Game, let B = 
”The first mafia member survives”. This time each shooter has (n − 1) ad-

missible targets for event B to occur. Therefore, the corresponding probability 

is 
� � 

(n − 1)n 1 n 
Pr(B) = 

nn 
= 1 − −→ e −1 . 

n 

This result can be further generalized (see Section 2.1) to show that probability 

of the first mafia member dying from exactly 3 bullets is 

� � � �n−3 −1 n 1 1 1 1 e 
1 − −→ . 

3 n n n n 3! 

� � 

n 
Example 6 (Multinomial Coefficients). Similar to the binomial coefficient 

k 
, 

Pr 
given n elements and r numbers ni, i = 1, . . . , r, with = n, the multi-i=1 ni 

nomial coefficient expresses the number of ways those n elements can be sepa-
� � 

n rated into r groups of size ni. Proceeding iteratively, there are choices for 
n1 

� � � � 

n−n1 nr the first group, choices for the second group, · · · , and choices for 
n2 nr 

the r-th group. In total this provides 

� �� � � � � � 

n n − n1 nr n! n · · · = ,
n1 n2 nr n1!n2! · · · nr! n1, . . . , nr 

possible choices, where this last expression is the multinomial coefficient. 

A FEW USEFUL RANDOM VARIABLES 

Recall that a random variable X : → R is called discrete if its range (i.e., the 

set of values that it can take) is a countable set. The PMF of X is a function 

pX : R → [0, 1], defined by pX (x) = P(X = x), and completely determines 

the probability law of X. 

The following are some important PMFs. 
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(a) Discrete uniform with parameters a and b, where a and b are integers with 

a < b. Here, 

pX (k) = 1/(b − a + 1), k = a, a + 1, . . . , b, 

and pX (k) = 0, otherwise.1 

(b) Bernoulli with parameter p, where 0 ≤ p ≤ 1. Here, pX (0) = p, pX (1) = 
1 − p. 

(c) Binomial with parameters n and p, where n ∈ N and p ∈ [0, 1]. Here, 

� � 

n 
pX (k) = p k(1 − p)n−k , k = 0, 1, . . . , n. 

k 

A binomial random variable with parameters n and p represents the number 

of heads observed in n independent tosses of a coin if the probability of 

heads at each toss is p. 

(d) Geometric with parameter p, where 0 < p ≤ 1. Here, 

pX (k) = (1 − p)k−1 p, k = 1, 2, . . . , . 

A geometric random variable with parameter p represents the number of 

independent tosses of a coin until heads are observed for the first time, if the 

probability of heads at each toss is p. 

(e) Poisson with parameter �, where � > 0. Here, 

�k 

pX (k) = e −� , k = 0, 1, . . . . 
k! 

As will be seen shortly, a Poisson random variable can be thought of as a 

limiting case of a binomial random variable. Note that this is a legitimate 

PMF (i.e., it sums to one), because of the series expansion of the exponential 
P1 � function, e = �k/k!. k=0 

(f) Power law with parameter , where > 0. Here, 

1 1 
pX (k) = − , k = 1, 2, . . . . 

k (k + 1) 

An equivalent but more intuitive way of specifying this PMF is in terms of 

the formula 
1 

P(X ≥ k) = , k = 1, 2, . . . . 
k 

1In the remaining examples, the qualification “pX (k) = 0, otherwise,” will be omitted for 

brevity. 
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Note that when is small, the “tail” P(X ≥ k) of the distribution decays 

slowly (slower than an exponential) as k increases, and in some sense such 

a distribution has “heavy” tails. 

Notation: Let us use the abbreviations dU(a, b), Ber(p), Bin(n, p), Geo(p), 
Pois(�), and Pow( ) to refer the above defined PMFs. We will use notation 

such as X = dU(a, b) or X ∼ dU(a, b) as a shorthand for the statement that X 
is a discrete random variable whose PMF is uniform on (a, b), and similarly for 

d 
the other PMFs we defined. We will also use the notation X = Y to indicate 

that two random variables have the same PMFs. 

2.1 Poisson distribution as a limit of the binomial 

To get a feel for the Poisson random variable, think of a binomial random vari-

able with very small p and very large n. For example, consider the number of 

typos in a book with a total of n words, when the probability p that any one 

word is misspelled is very small (associate a word with a coin toss that results in 

a head when the word is misspelled), or the number of cars involved in accidents 

in a city on a given day (associate a car with a coin toss that results in a head 

when the car has an accident). Such random variables can be well modeled with 

a Poisson PMF. 

More precisely, the Poisson PMF with parameter � is a good approximation 

for a binomial PMF with parameters n and p, i.e., 

−� �
k n! 

e ≈ p k(1 − p)n−k , k = 0, 1, . . . , n, 
k! k! (n − k)! 

provided � = np, n is large, and p is small. In this case, using the Poisson 

PMF may result in simpler models and calculations. For example, let n = 100 
and p = 0.01. Then the probability of k = 5 successes in n = 100 trials is 

calculated using the binomial PMF as 

100! · 0.015(1 − 0.01)95 = 0.00290. 
95! 5! 

Using the Poisson PMF with � = np = 100 · 0.01 = 1, this probability is 

approximated by 

−1 1 e = 0.00306. 
5! 
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Proposition 1. (Binomial convergence to Poisson) Let us fix some � > 0, 

and suppose that Xn = Bin(n, �/n), for every n. Let X = Pois(�). Then, 

as n → ∞, the PMF of Xn converges to the PMF of X, in the sense that 

limn!1 P(Xn = k) = P(X = k), for any k ≥ 0. 

Proof: We have 

� n(n − 1) · · · (n − k + 1) �k ��n−k 

P(Xn = k) = · · 1 − . 
nk k! n 

Fix k and let n → ∞. We have, for j = 1, . . . , k, 

� �−k � �n n − k + j � � −� → 1, 1 − → 1, 1 − → e . 
n n n 

Thus, for any fixed k, we obtain 

�k 

lim P(Xn = k) = e −� = P(X = k), 
n!1 k! 

as claimed. 

3 JOINT, MARGINAL, AND CONDITIONAL PMFS 

In most applications, one typically deals with several random variables at once. 

In this section, we introduce a few concepts that are useful in such a context. 

3.1 Marginal PMFs 

Consider two discrete random variables X and Y associated with the same ex-

periment. The probability law of each one of them is described by the corre-

sponding PMF, pX or pY , called a marginal PMF. However, the marginal PMFs 

do not provide any information on possible relations between these two random 

variables. For example, suppose that the PMF of X is symmetric around the 

origin. If we have either Y = X or Y = −X, the PMF of Y remains the same, 

and fails to capture the specifics of the dependence between X and Y . 
d 

As another example let X = Bin(n, 1/2). Notice that then Y = n − X also 

has Bin(n, 1/2) as a PMF. At the same time X + Y = n and this is something 

that cannot be inferred from PMF alone. 
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3.2 Joint PMFs 

The statistical properties of two random variables X and Y are captured by a 

function pX,Y : R
2 → [0, 1], defined by 

pX,Y (x, y) = P(X = x, Y = y), 

called the joint PMF of X and Y . We think of X and Y defined on the same 

probability space ( , F , P). Namely, X, Y : → R. Then the event A = {! ∈
: X(!) = x, Y (!) = y} is well defined. Then P(X = x, Y = y) is simply 

P(A). So that we can talk about the probability of this event we also need to 

ensure that the event is measurable. 

Exercise 1. Suppose X and Y are two discrete random variables on the same 

probability space ( , F , P). Is it the case that for every x, y ∈ R the event 

A = {! ∈ : X(!) = x, Y (!) = y} is measurable with respect to F? Either 

prove this or construct a counterexample. 

From this point on we assume that the events A described above are measur-

able and will omit the measurability issues. Here and in the sequel, we will use 

the abbreviated notation P(X = x, Y = y) instead of the more precise notations 

P({X = x} ∩ {Y = y}) or P(X = x and Y = x). More generally, the PMF 

of finitely many discrete random variables, X1, . . . ,Xn on the same probability 

space is defined by 

pX1,...,Xn (x1, . . . , xn) = P(X1 = x1, . . . ,Xn = xn). 

Sometimes, we define a vector random variable X, by letting X = (X1, . . . ,Xn), 
in which case the joint PMF will be denoted simply as pX (x), where now the 

argument x is an n-dimensional vector. 

The joint PMF of X and Y determines the probability of any event that can 

be specified in terms of the random variables X and Y . For example if A is the 

set of all pairs (x, y) that have a certain property, then 
X 

� � 

P (X, Y ) ∈ A = pX,Y (x, y). 

(x,y)2A 

In fact, we can calculate the marginal PMFs of X and Y by using the formulas 
X X 

pX (x) = pX,Y (x, y), pY (y) = pX,Y (x, y). 
y x 

The formula for pX (x) can be verified using the calculation 
X X 

pX (x) = P(X = x) = P(X = x, Y = y) = pX,Y (x, y), 
y y 
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where the second equality follows by noting that the event {X = x} is the union 

of the countably many disjoint events {X = x, Y = y}, as y ranges over all the 

different values of Y . The formula for pY (y) is verified similarly. 

3.3 Conditional PMFs 

Let X and Y be two discrete random variables, defined on the same probability 

space, with joint PMF pX,Y . The conditional PMF of X given Y is a function 

pX|Y , defined by 

pX|Y (x | y) = P(X = x | Y = y), if P(Y = y) > 0; 

if P(Y = y) = 0, the value of pX|Y (y | x) is left undefined. Using the definition 

of conditional probabilities, we obtain 

pX,Y (x, y) 
pX|Y (x | y) = , 

pY (y) 

whenever pY (y) > 0. 

More generally, if we have random variables X1, . . . ,Xn ad Y1, . . . , Ym, 

defined on the same probability space, we define a conditional PMF by letting 

pX1,...,Xn | Y1,...,Ym (x1, . . . , xn | y1, . . . , ym) 

= P(X1 = x1, . . . ,Xn = xn | Y1 = y1, . . . , Ym = ym) 

pX1,...,Xn,Y1,...,Ym (x1, . . . , xn, y1, . . . , ym) 
= , 

pY1,...,Ym (y1, . . . , ym) 

whenever pY1,...,Ym (y1, . . . , ym) > 0. Again, if we define X = (X1, . . . ,Xn) 
and Y = (Y1, . . . , Ym), the shorthand notation pX|Y (x | y) can be used. 

P 

Note that if pY (y) > 0, then pX|Y (x | y) = 1, where the sum is over x 

all x in the range of the random variable X. Thus, the conditional PMF is es-

sentially the same as an ordinary PMF, but with redefined probabilities that take 

into account the conditioning event Y = y. Visually, if we fix y, the conditional 

PMF pX|Y (x | y), viewed as a function of x is a “slice” of the joint PMF pX,Y , 

renormalized so that its entries sum to one. 

4 INDEPENDENCE OF RANDOM VARIABLES 

We now define the important notion of independence of random variables. We 

start with a general definition that applies to all types of random variables, in-

cluding discrete and continuous ones. We then specialize to the case of discrete 

random variables. 
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4.1 Independence of general random variables 

Intuitively, two random variables are independent if any partial information on 

the realized value of one random variable does not change the distribution of the 

other. This notion is formalized in the following definition. 

Definition 2. (Independence of random variables) 

(a) Let X1, . . . ,Xn be random variables defined on the same probability space. 

We say that these random variables are independent if the events X1 ∈
B1, . . . ,Xn ∈ Bn are independent for any Borel subsets B1, . . . , Bn of the 

real line. Namely, 

P(X1 ∈ B1, . . . ,Xn ∈ Bn) = P(X1 ∈ B1) · · · P(Xn ∈ Bn), 

for any Borel subsets B1, . . . , Bn. 

(b) Let {Xs | s ∈ S} be a collection of random variables indexed by the ele-

ments of a (possibly infinite) index set S. We say that these random variables 

are independent if for every finite subset {s1, . . . , sn} of S, the random vari-

ables Xs1 , . . . ,Xsn are independent. 

Verifying the independence of random variables using the above definition 

(which involves arbitrary Borel sets) is rather difficult. It turns out that one only 

needs to examine Borel sets of the form (−∞, x]. 

Proposition 2. Suppose that for every n, every x1, . . . , xn, and every finite 

subset {s1, . . . , sn} of S, the events {Xsi ≤ xi}, i = 1, . . . , n, are indepen-

dent. Then, the random variables Xs, s ∈ S, are independent. 

The proof is a simple application of Theorem 2 from Lecture 3 applied to a 

generating p-system (−∞, x]. 
Let us define the joint CDF of of the random variables X1, . . . ,Xn by 

FX1,...,Xn (x1, . . . , xn) = P(X1 ≤ x1, . . . ,Xn ≤ xn). 

In view of Proposition 2, independence of X1, . . . ,Xn is equivalent to the con-

dition 

FX1,...,Xn (x1, . . . , xn) = FX1 (x1) · · · FXn (xn), ∀ x1, . . . , xn. 
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Exercise 2. Consider a collection {As | s ∈ S} of events, where S is a (possibly infi-

nite) index set. Prove that the events As are independent if and only if the corresponding 

indicator functions IAs 
, s ∈ S, are independent random variables. 

4.2 Independence of discrete random variables 

For a finite number of discrete random variables, independence is equivalent to 

having a joint PMF which factors into a product of marginal PMFs. 

Theorem 1. Let X and Y be discrete random variables defined on the same 

probability space. The following are equivalent. 

(a) The random variables X and Y are independent. 

(b) For any x, y ∈ R, the events {X = x} and {Y = y} are independent. 

(c) For any x, y ∈ R, we have pX,Y (x, y) = pX (x)pY (y). 

(d) For any x, y ∈ R such that pY (y) > 0, we have pX|Y (x | y) = pX (x). 

Proof: The fact that (a) implies (b) is immediate from the definition of inde-

pendence, since recall that the sets consisting of one point {x}, {y} are Borel 

sets. 

That (b) implies (c), and (c) implies (d) is also an immediate consequence 

of our definitions. Let us show that (d) implies (c). For the case when pY (y) > 
0, we have pX,Y (x, y) = pX|Y (x | y)pY (y) = pX (x)pY (y). When pY (y) = 
0, we have also pX (x)pY (y) = 0. So in order to show the identity we need 

pX,Y (x, y) = 0. But pX,Y (x, y) = P(X = x, Y = y) ≤ P(Y = y) = 0, and 

we have verified that both parts equal zero. 

We complete the proof by verifying that (c) implies (a). Suppose that X and 

Y are independent, and let A, B, be two Borel subsets of the real line. We then 
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have 
X 

P(X ∈ A, Y ∈ B) = P(X = x, Y = y) 
x2A, y2B 
X 

= pX,Y (x, y) 
x2A, y2B 
X 

= pX (x)pY (x) 
x2A, y2B 
� �� � 

X X 

= pX (x) pY (y) 
x2A y2B 

= P(X ∈ A) P(Y ∈ B). 

Since this is true for any Borel sets A and B, we conclude that X and Y are 

independent. 

We note that Theorem 1 generalizes to the case of multiple, but finitely many, 

random variables. The generalization of conditions (a)-(c) should be obvious. 

As for condition (d), it can be generalized to a few different forms, one of which 

is the following: given any subset S0 of the random variables under considera-

tion, the conditional joint PMF of the random variables Xs, s ∈ S0, given the 

values of the remaining random variables, is the same as the unconditional joint 

PMF of the random variables Xs, s ∈ S0, as long as we are conditioning on an 

event with positive probability. 

We finally note that functions g(X) and h(Y ) of two independent random 

variables X and Y must themselves be independent. This should be expected 

on intuitive grounds: If X is independent from Y , then the information provided 

by the value of g(X) should not affect the distribution of Y , and consequently 

should not affect the distribution of h(Y ). Observe that when X and Y are 

discrete, then g(X) and h(Y ) are random variables (the required measurability 

conditions are satisfied) even if the functions g and h are not measurable (why?). 

Theorem 2. Let X and Y be independent discrete random variables. Let g 
and h be some functions from R into itself. Then, the random variables g(X) 
and h(Y ) are independent. 

The proof is left as an exercise. 

4.3 Examples 

Example. Let X1, . . . , Xn be independent Bernoulli random variables with the same 
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parameter p. Then, the random variable X defined by X = X1 + · · · + Xn is binomial 

with parameters n and p. To see this, consider n independent tosses of a coin in which 

every toss has probability p of resulting in a one, and let Xi be the result of the ith coin 

toss. Then, X is the number of ones observed in n independent tosses, and is therefore 

a binomial random variable. 

Example. Let X and Y be independent binomial random variables with parameters 

(n, p) and (m, p), respectively. Then, the random variable Z , defined by Z = X + Y is 

binomial with parameters (n+m, p). To see this, consider n+m independent tosses of 

a coin in which every toss has probability p of resulting in a one. Let X be the number 

of ones in the first n tosses, and let Y be the number of ones in the last m tosses. Then, 

Z is the number of ones in n+m independent tosses, which is binomial with parameters 

(n + m, p). 

Example. Consider n independent tosses of a coin in which every toss has probability 

p of resulting in a one. Let X be the number of ones obtained, and let Y = n − X , 

which is the number of zeros. The random variables X and Y are not independent. For 
n example, P(X = 0) = (1 − p)n and P(Y = 0) = p , but P(X = 0, Y = 0) = 0 =6 

P(X = 0)P(Y = 0). Intuitively, knowing that there was a small number of heads gives 

us information that the number of tails must be large. 

However, in sharp contrast to the intuition from the preceding example, we 

obtain independence when the number of coin tosses is itself random, with a 

Poisson distribution. More precisely, let N be a Poisson random variable with 

parameter �. We assume that X has conditional PMF pX|N (· | n) is binomial 

with parameters n and p (representing the number of ones observed in n coin 

tosses), and define Y = N − X, which represents the number of zeros obtained. 

We have the following surprising result. An intuitive justification will have to 

wait until we consider the Poisson process, later in this course. The proof is left 

as an exercise. 

Theorem 3. (Splitting of a Poisson random variable) The random 
d d 

variables X and Y are independent. Moreover, X = Pois(�p) and Y = 
� � 

Pois �(1 − p) . 
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5 EXPECTED VALUES 

5.1 Preliminaries: infinite sums 

Consider a sequence {an} of nonnegative real numbers and the infinite sum 
P1 Pn 

i=1 ai, defined as the limit, limn!1 i=1 ai, of the partial sums. The infinite 

sum can be finite or infinite; in either case, it is well defined, as long as we 

allow the limit to be an extended real number. Furthermore, it can be verified 

that the value of the infinite sum is the same even if we reorder the elements 

of the sequence {an} and carry out the summation according to this different 

order. Because the order of the summation does not matter, we can use the 
P 

notation n2N an for the infinite sum. More generally, if C is a countable 

set and g : C → [0, ∞) is a nonnegative function, we can use the notation 
P 

x2C g(x), which is unambiguous even without specifying a particular order 

in which the values g(x) are to be summed. 

When we consider a sequence of nonpositive real numbers, the discussion 

remains the same, and infinite sums can be unambiguously defined. However, 

when we consider sequences that involve both positive and negative numbers, 

the situation is more complicated. In particular, the order at which the elements 

of the sequence are added can make a difference. 
Pn 

Example. Let an = (−1)n/n. It can be verified that the limit limn!1 i=1 an exists, 

and is finite, but that the elements of the sequence {an} can be reordered to form a new 
P

n 
sequence {bn} for which the limit of bn does not exist. 

i=1 

In order to deal with the general case, we proceed as follows. Let S be 

a countable set, and consider a collection of real numbers as, s ∈ S. Let S+ 

(respectively, S−) be the set of indices s for which as ≥ 0 (respectively, as < 0). 
P P 

Let S+ = as and S− = |as|. We distinguish four cases. s2S+ s2S
− 

P 

(a) If both S+ and S− are finite (or equivalently, if |as| < ∞), we say s2S 
P 

that the sum is absolutely convergent, and is equal to S+ −S−. In s2S as 
this case, for every possible arrangement of the elements of S in a sequence 

{sn}, we have 
n 
X 

lim asi = S+ − S−. 
n!1 

i=1 
P 

(b) If S+ = ∞ and S− < ∞, the sum is not absolutely convergent; s2S as 
we define it to be equal to ∞. In this case, for every possible arrangement 

of the elements of S in a sequence {sn}, we have 

n 
X 

lim asi = ∞. 
n!1 

i=1 
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(c) If S+ < ∞ and S− = ∞, the sum is not absolutely convergent; s2S as 
we define it to be equal to −∞. In this case, for every possible arrangement 

of the elements of S in a sequence {sn}, we have 

n 
X 

lim asi = −∞. 
n!1 

i=1 

P 

(d) If S+ = ∞ and S− = ∞, the sum is left undefined. In fact, in this s2S an 
case, different arrangements of the elements of S in a sequence {sn} will 

result into different or even nonexistent values of the limit 

n 
X 

lim asi . 
n!1 

i=1 

To summarize, we consider a countable sum to be well defined in cases (a)-

(c), and call it absolutely convergent only in case (a). 

We close by recording a related useful fact. If we have a doubly indexed 

family of nonnegative numbers aij , i, j ∈ N, and if either (i) the numbers are 
P 

nonnegative, or (ii) the sum (i,j) aij is absolutely convergent, then 

1 1 1 1 
XX XX X 

aij = aij = aij. (1) 

i=1 j=1 j=1 i=1 (i,j)2N2 

More important, we stress that the first equality need not hold in the absence of 

conditions (i) or (ii) above. 

5.2 Definition of the expectation 

The PMF of a random variable X provides us with several numbers, the prob-

abilities of all the possible values of X. It is often desirable to summarize this 

information in a single representative number. This is accomplished by the ex-

pectation of X, which is a weighted (in proportion to probabilities) average of 

the possible values of X. 

As motivation, suppose you spin a wheel of fortune many times. At each 

spin, one of the numbers m1,m2, . . . ,mn comes up with corresponding proba-

bility p1, p2, . . . , pn, and this is your monetary reward from that spin. What is 

the amount of money that you “expect” to get “per spin”? The terms “expect” 

and “per spin” are a little ambiguous, but here is a reasonable interpretation. 

14 
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Suppose that you spin the wheel k times, and that ki is the number of times 

that the outcome is mi. Then, the total amount received is m1k1 +m2k2 + · · · + 
mnkn. The amount received per spin is 

m1k1 + m2k2 + · · · + mnkn 
M = . 

k 

If the number of spins k is very large, and if we are willing to interpret proba-

bilities as relative frequencies, it is reasonable to anticipate that mi comes up a 

fraction of times that is roughly equal to pi: 

ki ≈ pi, i = 1, . . . , n. 
k 

Thus, the amount of money per spin that you “expect” to receive is 

m1k1 + m2k2 + · · · + mnkn 
M = ≈ m1p1 + m2p2 + · · · + mnpn. 

k 

Motivated by this example, we introduce the following definition. 

Definition 3. (Expectation) We define the expected value (also called the 

expectation or the mean) of a discrete random variable X, with PMF pX , as 

X 

E[X] = xpX (x), 
x 

whenever the sum is well defined, and where the sum is taken over the count-

able set of values in the range of X. 

Observe that E[X] is non-negative if X only takes non-negative values with 

positive probability. (Namely, pX (x) > 0 implies x ≥ 0). 

5.3 Properties of the expectation 

We start by pointing out an alternative formula for the expectation, and leave 

its proof as an exercise. In particular, if X can only take nonnegative integer 

values, then 

X 

E[X] = P(X > n). (2) 

n�0 

Example. Using this formula, it is easy to give an example of a random variable for 
d

which the expected value is infinite. Consider X = Pow( ), where ≤ 1. Then, it can 

15 
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P1 P 

1 be verified, using the fact 1/n = ∞, that E[X ] = = ∞. On the other 
n=1 n�0 n

hand, if > 1, then E[X ] < ∞. 

Here is another useful fact, whose proof is again left as an exercise. 

Proposition 3. Given a discrete random variable X and a function g : R →
R, we have 

X 

E[g(X)] = g(x)pX (x). (3) 

{x | pX (x)>0} 

More generally, this formula remains valid given a vector X = (X1, . . . ,Xn) 
of random variables with joint PMF pX = pX1,...,Xn , and a function g : 
R
n → R. 

For example, suppose that X is a discrete random variable and consider 

the function g : R → R defined by g(x) = x2 . Let Y = g(X). In order 

to calculate the expectation E[Y ] according to Definition 2, we need to first 
P 

find the PMF of Y , and then use the formula E[Y ] = ypY (y). However, y 

according to Proposition 3, we can work directly with the PMF of X, and write 
P 

2 
E[Y ] = E[X2] = x pX (x). x 

The quantity E[X2] is called the second moment of X. More generally, 

if r ∈ N, the quantity E[Xr] is called the rth moment of X. Furthermore, 
�� � � r 

E X − E[X] is called the rth central moment of X. The second central 

moment, E[(X−E[X])2] is called the variance of X, and is denoted by var(X). 
The square root of the variance is called the standard deviation of X, and is 

often denoted by ˙X , or just ˙. Note, that for every even r, the rth moment 

and the rth central moment are always nonnegative; in particular, the standard 

deviation is always well defined. 

We continue with a few more important properties of expectations. In the 

sequel, notations such as X ≥ 0 or X = c mean that X(!) ≥ 0 or X(!) = c, 
respectively, for all ! ∈ . Similarly, a statement such as “X ≥ 0, almost 

surely” or “X ≥ 0, a.s.,” means that P(X ≥ 0) = 1. 

16 
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Proposition 4. Let X and Y be discrete random variables defined on the 

same probability space. 

(a) If X ≥ 0, a.s., then E[X] ≥ 0. 

(b) If X = c, a.s., for some constant c ∈ R, then E[X] = c. 

(c) Linearity of expectation. For any a, b ∈ R, we have E[aX + bY ] = 
aE[X] + bE[Y ] (as long as the sum aE[X] + bE[Y ] is well-defined). 

(d) If E[X] is finite, then var(X) = E[X2] − (E[X])2 . 

(e) For every a ∈ R, we have var(aX) = a2var(X). 

(f) If X and Y are independent and have finite expectations, then E[XY ] = 
E[X]E[Y ] and var(X + Y ) = var(X) + var(Y ). 

(g) More generally, if X1, . . . ,Xn are independent and have finite expectations, 

then 

n n 
h i 

Y Y 

E Xi = E[Xi], 
i=1 i=1 

and 

n n 
� � 

X X 

var Xi = var(Xi). 
i=1 i=1 

Remark: We emphasize that property (c) does not require independence. 

Proof: We only give the proof for the case where all expectations involved are 

well defined and finite, and leave it to the reader to verify that the results extend 

to the case where all expectations involved are well defined but possibly infinite. 

Parts (a) and (b) are immediate consequences of the definitions. For part (c), 

we use the second part of Proposition 3, and then Eq. (1), we obtain 

X 

E[aX + bY ] = (ax + by)pX,Y (x, y) 
x,y 

� � � � 

X X X X 

= ax pX,Y (x, y) + by pX,Y (x, y) 
x y y x 
X X 

= a xpX (x) + b ypY (y) 
x y 

= aE[X] + bE[Y ]. 

17 



For part (d), we have 

� � 

var(X) = E X2 − 2XE[X] + (E[X])2 
� � 

= E[X2] − 2E XE[X] + (E[X])2 

= E[X2] − 2(E[X])2 + (E[X])2 

= E[X2] − (E[X])2 . 

where the second equality made use of property (c). 

Part (e) follows easily from (d) and (c). For part (f), we apply Proposition 3 

and then use independence to obtain 

X 

E[XY ] = xypX,Y (x, y) 
x,y 
X 

= xypX (x)pY (y) 
x,y 
� �� � 

X X 

= xpX (x) ypY (y) 
x y 

= E[X] E[Y ]. 

Furthermore, using property (d), we have 

var(X + Y ) = E[(X + Y )2] − (E[X + Y ])2 

= E[X2] + E[Y 2] + 2E[XY ] − (E[X])2 − (E[Y ])2 − 2E[X]E[Y ]. 

Using the equality E[XY ] = E[X]E[Y ], the above expression becomes var(X)+ 
var(Y ). The proof of part (g) is similar and is omitted. 

Remark: The equalities in part (f) need not hold in the absence of independence. 

For example, consider a random variable X that takes either value 1 or −1, with 

probability 1/2. Then, E[X] = 0, but E[X2] = 1. If we let Y = X, we see 
� �2 

that E[XY ] = E[X2] = 1 6= 0 = E[X] . Furthermore, var(X + Y ) = 
var(2X) = 4var(X), while var(X) + var(Y ) = 2. 

Exercise 3. Show that var(X) = 0 if and only if there exists a constant c such that 

P(X = c) = 1. 
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