

Readings:

Notes from Lectures 16-19. [GS], Section 7.1-7.6 [Cinlar], Chapter III

Exercise 1. We study convergence of algebraic operations:

(a) Show that

$$
X_n \stackrel{\text{i.p.}}{\to} X, Y_n \stackrel{\text{i.p.}}{\to} Y \quad \Rightarrow \quad X_n Y_n \stackrel{\text{i.p.}}{\to} XY
$$

(*Hint*: reduce to $x \to 0$.)

(b) Show, however, that

$$
X_n \stackrel{\rm d}{\to} X, Y_n \stackrel{\rm d}{\to} Y \quad \neq \quad X_n Y_n \stackrel{\rm d}{\to} XY
$$

(c) Assume $X_n \perp \!\!\! \perp Y_n$ and $X \perp \!\!\! \perp Y$. Show that then

$$
X_n \stackrel{\rm d}{\to} X, Y_n \stackrel{\rm d}{\to} Y \quad \Rightarrow \quad X_n Y_n \stackrel{\rm d}{\to} XY
$$

(*Hint*: reduce to $x \to 0$.)

Solution:

(a) Writing the product as a sum of squares

$$
X_n Y_n = \frac{(X_n + Y_n)^2 - (X_n - Y_n)^2}{4}.
$$

Therefore, by the triangle inequality,

$$
|X_n Y_n| \le \frac{|X_n + Y_n|^2 + |X_n - Y_n|^2}{4}.
$$

Thus

$$
\mathbb{P}(|X_nY_n| > \varepsilon) \le \left(\frac{|X_n+Y_n|^2}{4} > \frac{\varepsilon}{2}\right) + \left(\frac{|X_n-Y_n|^2}{4} > \frac{\varepsilon}{2}\right),
$$

and it suffices to show that convergence in probability is closed under scalar multiplication, addition and squares. Addition is given in the lecture notes, scalar multiplication follows since, for all $c \geq 0$,

$$
\mathbb{P}\left(c|X|>\varepsilon\right)\mathbb{P}\left(|X|>\varepsilon/c\right),\
$$

and squaring follows since

$$
\mathbb{P} |X|^2 > \varepsilon = \mathbb{P} |X| > \sqrt{\varepsilon} ,
$$

i.e. by choose ε appropriately.

(b) Consider the probability space $([0, 1], \mathcal{B}, \lambda)$. Let

$$
X_n = \begin{cases} \mathbb{1}_{[0,1/2]} & n \text{ odd} \\ \mathbb{1}_{(1/2,1]} & n \text{ even} \end{cases} \qquad Y_n = \begin{cases} \mathbb{1}_{[0,1/2]} & n \text{ even} \\ \mathbb{1}_{(1/2,1]} & n \text{ odd} \end{cases}.
$$

Then for all n, X_n and Y_n are Bernoulli 1/2 random variables and thusly converge in distribution to a Bernoulli 1/2 random variable. However, $X_nY_n \equiv 0$ and the product of Bernoulli random variables is not identically zero.

(c) As $X_n \to X$ and $Y_n \to Y$

$$
\lim_{n \to \infty} F_{X_n, Y_n}(x, y) = \lim_{n \to \infty} F_{X_n}(x) F_{Y_n}(y) \quad \text{(Independence)}
$$
\n
$$
= \left(\lim_{n \to \infty} F_{X_n}(x) \right) \left(\lim_{n \to \infty} F_{Y_n}(y) \right) \quad \text{(Independence)}
$$
\n
$$
= {^{(a)} F_X(x) F_Y(y)}
$$
\n
$$
= F_{X, Y}(x, y),
$$

where (a) holds at all continuity points of F_X and F_Y or equivalent of $F_{X,Y}$. Therefore, $(X_n, Y_n) \to (X, Y)$ in distribution. Let $f : \mathbb{R} \to \mathbb{R}$ be a bounded continuous function and q_n , q and p_n , p be the quantile functions for the $\{X_n\}$, X, the $\{Y_n\}$ and Y respectively, i.e. $q_n \to q$ almost everywhere $p_n \to p$ almost everywhere and

$$
X_n \sim q_n(U) \quad X \sim q(U) \quad Y_n \sim p_n(V) \quad Y \sim p(V)
$$

for independent random variables U and V. Therefore, $q_n(U)p_n(V) \rightarrow$

 $q(U)p(V)$ almost everywhere and by the BCT

$$
\lim_{n \to \infty} E[f(X_n Y_n)] = \lim_{n \to \infty} E[f(q_n(U)p_n(V))]
$$

$$
= E\left[\lim_{n \to \infty} f(q_n(U)p_n(V))\right]
$$
(BCT)
$$
= E[f(q(U)p(V))]
$$
(f continuous)
$$
= E[f(XY)].
$$

Hence $X_n Y_n \to XY$ in distribution.

Exercise 2 (Metrization of convergence in probability)**.** Define a pseudo-metric on the space of random-variables:

$$
d(X,Y) \triangleq \mathbb{E} \frac{|X-Y|}{1+|X-Y|} .
$$

Show $X_n \stackrel{\text{i.p.}}{\rightarrow} X$ iff $d(X_n, X) \rightarrow 0$.

Solution: Let $\varepsilon > 0$ and WLOG assume $\varepsilon < 1$. Then,

$$
\{|X - Y| \ge \varepsilon\} = \left\{ \frac{|X - Y|}{1 + |X - Y|} \ge \frac{\varepsilon}{1 + \varepsilon} \right\},\
$$

and

$$
\left\{ \frac{|X - Y|}{1 + |X - Y|} \ge \varepsilon \right\} = \left\{ |X - Y| \ge \frac{\varepsilon}{1 - \varepsilon} \right\}
$$

By Markov's inequality

$$
\mathbb{P}(|X - Y| \ge \varepsilon) = \mathbb{P}\left(\frac{|X - Y|}{1 + |X - Y|} \ge \frac{\varepsilon}{1 + \varepsilon}\right)
$$

$$
\le \frac{1 + \varepsilon}{\varepsilon} E\left[\frac{|X - Y|}{1 + |X - Y|}\right]
$$

$$
= \frac{1 + \varepsilon}{\varepsilon} d(X, Y).
$$

Therefore, convergence in the metric implies convergence in probability. For the other direction let

$$
Z = \frac{|X - Y|}{1 + |X - Y|}
$$

and

$$
Z_{\varepsilon} = \varepsilon \mathbb{1}\{|Z| < \varepsilon\} + \mathbb{1}\{|Z| \geq \varepsilon\}.
$$

Since $Z \leq 1$, then $Z \leq Z_{\varepsilon}$ and

$$
d(X,Y) = E[Z]
$$

\n
$$
\leq E[Z_{\varepsilon}]
$$

\n
$$
= E[\varepsilon \{ |Z| < \varepsilon \} + \{ |Z| \geq \varepsilon \}]
$$

\n
$$
\leq \varepsilon + \mathbb{P}(|Z| \geq \varepsilon)
$$

\n
$$
= \varepsilon + \mathbb{P}\left(|X - Y| \geq \frac{\varepsilon}{1 - \varepsilon}\right).
$$

Hence convergence in probability implies convergence in the metric.

Exercise 3 (20 pts)**.** Prove Cauchy criterions for convergence a.s. and i.P.:

(i) Show that X_n converges almost surely iff

$$
\forall \epsilon > 0 \quad \mathbb{P}[\sup_{k \geq 0} |X_{n+k} - X_n| > \epsilon] \to 0 \quad n \to \infty
$$

(ii) Show that X_n converges in probability iff

$$
\forall \epsilon > 0 \quad \sup_{k \ge 0} \mathbb{P}[|X_{n+k} - X_n| > \epsilon] \to 0 \quad n \to \infty
$$

Solution:

(i) Equivalently, for all $\varepsilon > 0$ there exists $N \in \mathbb{N}$ so that for all $n \ge N$

$$
\mathbb{P}\left(\sup_{k\geq 0}|X_{n+k}-X_n|>\varepsilon\right)<\varepsilon.
$$

Let $\varepsilon > 0$. Suppose X_n converges almost surely to some random variable X. Then, there exists a measurable set E with $\mathbb{P}(E) < \varepsilon$ so that $X_n \Rightarrow X$ uniformly on E^c . Therefore, there exists $N \in \mathbb{N}$ so that for all $n \geq N$ and for all $\omega \in E^c$

$$
|X_n(\omega) - X(\omega)| \leq \varepsilon.
$$

Hence,

$$
\mathbb{P}\left(\sup_{k\geq 0}|X_{n+k}-X_n|>\varepsilon\right)=\mathbb{P}(E)<\varepsilon.
$$

Conversely suppose the Cauchy criterion is satisfied. For all k , $\sup_{k\geq0}|X_{n+k}-\rangle$ $|X_n| \geq |X_{n+k} - X_n|$. Therefore, for all k,

$$
\mathbb{P}(|X_{n+k}-X_n|>\varepsilon)\leq \mathbb{P}\left(\sup|X_{n+k}-X_n|>\varepsilon\right).
$$

Hence

$$
\sup_{k\geq 0} \mathbb{P}\left(|X_{n+k} - X_n| > \varepsilon \right) \leq \mathbb{P}\left(\sup_{k\geq 0} |X_{n+k} - X_n| > \varepsilon \right),
$$

and thusly this condition is stronger than the condition in part (ii). Therefore, by part (ii) $\{X_n\}$ converges in probability to a random variable X. The set of points where X_n does not converge to X is

$$
\{X_n \nrightarrow X\} = \bigcup_{\varepsilon > 0} \bigcap_{n=1}^{\infty} \{ \sup_{k \ge n} |X_k - X| > \varepsilon \},
$$

and by continuity of probability

$$
\mathbb{P}\bigg(\bigcap_{n=1}^{\infty}\left\{\sup_{k\geq n}|X_{k}-X|>\varepsilon\right\}\bigg)=\lim_{n\to\infty}\mathbb{P}\bigg(\sup_{k\geq n}|X_{k}-X|>\varepsilon\bigg).
$$

Thus it suffices to show that for all $\varepsilon > 0$ there exists an $N \in \mathbb{N}$ so for all $n\geq N$

$$
\mathbb{P}\left(\sup_{k\geq n}|X_k-X|>\varepsilon\right)<\varepsilon.
$$

By the triangle inequality

$$
|X_k - X| \le |X_k - X_n| + |X_n - X|,
$$

and thus

$$
\sup_{k \ge n} |X_k - X| \le \sup_{k \ge n} |X_k - X_n| + |X_n - X|
$$

$$
\le \sup_{k \ge 0} |X_{n+k} - X_n| + |X_n - X|.
$$

Choose N_1 to satisfy the Cauchy criterion for $\varepsilon/2$ and N_2 for the convergence in measure for $\varepsilon/2$. Let $N = \max\{N_1, N_2\}$, then for all $n \ge N$

$$
\mathbb{P}\left(\sup_{k\geq n}|X_k-X|>\varepsilon\right)\leq \mathbb{P}\left(\sup_{k\geq 0}|X_{n+k}-X_n|>\frac{\varepsilon}{2}\right)+\mathbb{P}\left(|X_n-X|>\frac{\varepsilon}{2}\right)<\varepsilon
$$

as desired.

(ii) Suppose that the sequence satisfies the Cauchy criterion. Then, there exists a subsequence $\{X_{n_k}\}\$ such that, if $E_k = \{|X_{n_k} - X_{n_{k+1}}| \geq 2^{-k}\}\$, then $\mathbb{P}(E_k) \leq 2^{-k}$. Let $F_k = \bigcup_{j=k}^{\infty} E_j$. For $\omega \notin F_k$, and $i \geq j \geq k$, we have

$$
|X_{n_j}(\omega) - X_{n_i}(\omega)| \le \sum_{l=j}^{i-1} |X_{n_{l+1}}(\omega) - X_{n_l}(\omega)| \le 2^{1-j}
$$

by the definition of the subsequence. This means that $\{X_{n_k}\}$ is pointwise Cauchy on F_k^c . Let $F = \bigcap_{k=1}^{\infty} F_k = \limsup E_k$, and note that $\mathbb{P}(F)=0$. Let us define a random variable X such that on $X(\omega)=0$ for all $\omega \in F$, and $X(\omega) = \lim X_{n_k}(\omega)$ for all $\omega \notin F$. Then $X_{n_k} \to X$ a.s. and thus $X_{n_k} \to X$ i.p. Finally, we have

$$
\{|X_n - X| \ge \epsilon\} \subset \{|X_{n_k} - X_n| \ge \epsilon/2\} \cup \{|X_{n_k} - X| \ge \epsilon/2\},\
$$

and the right-hand side can be made arbitrarily small with large k and n , and thus we have convergence in probability of X_n to X.

Conversely, for $a > 0$ and $m, n \in \mathbb{N}$, let $E_n(a) = \{ \omega : |X_n(\omega) - X(\omega)| \geq \omega \}$ a} and $F_{m,n}(a) = \{ \omega : |X_m(\omega) - X_n(\omega)| \ge a \}$. Then, for every $a > 0$ and every m, n , we have

$$
F_{m,n}(a) \subset E_m(a/2) \cup E_n(a/2).
$$

In fact, if ω is neither in $E_m(a/2)$ nor in $E_n(a/2)$, then $|X_m(\omega)-X(\omega)| <$ $a/2$ and $|X_n(\omega) - X(\omega)| < a/2$, so that $|X_m(\omega) - X_n(\omega)| \leq |X_m(\omega) - X(\omega)|$ $X(\omega)|+|X_n(\omega)-X(\omega)| < a/2+a/2 = a$ so $|X_m(\omega)-X(\omega)| < a$, which shows $\omega \notin F_{m,n}(a)$. In virtue of the monotonicity and the subadditivity of the measure, we also have

$$
0 \leq \mathbb{P}(F_{m,n}(a)) \leq \mathbb{P}(E_m(a/2) \cup E_n(a/2)) \leq \mathbb{P}(E_m(a/2)) + \mathbb{P}(E_n(a/2)).
$$
\n(1)

Fix $a > 0$. Since $X_n \to X$ in probability, for every $\epsilon > 0$ there exists k such that

$$
n > k \Rightarrow \mathbb{P}(E_n(a/2)) < \epsilon/2.
$$
 (2)

Then, for $m > k$ and $n > k$, it follows from (1) and (2) that

$$
\mathbb{P}(F_{m,n}(a)) < \epsilon/2 + \epsilon/2 = \epsilon
$$

which means $\lim_{m,n\to\infty} \mathbb{P}(F_{m,n}(a)) = 0$. Since this holds for every $a >$ 0, it follows that the Cauchy criterion is satisfied.

Exercise 4. Let $\{X_n\}$ be a sequence of random variables defined on the same probability space.

- (a) Show $\mathbb{E}[|X_n X|] \to 0$ implies $X_n \stackrel{\text{i.p.}}{\to} X$.
- (b) Suppose that $X_n \stackrel{\text{i.p.}}{\rightarrow} 0$ and that for some constant c, we have $|X_n| \leq c$, for all n , with probability 1. Show that

$$
\lim_{n \to \infty} \mathbb{E}[|X_n|] = 0.
$$

- (c) Suppose that each X_n can only take the values 0 and 1 and, that $\mathbb{P}(X_n =$ $1) = 1/n.$
	- (i) Give an example in which we **have** almost sure convergence of X_n to 0.
	- (ii) Give an example in which we **do not have** almost sure convergence of X_n to 0.

Solution:

(a) Follows from Markov's inequality

$$
\mathbb{P}(|X_n - 0| \ge \epsilon) \le \frac{E[|X_n|]}{\epsilon},
$$

Therefore, if $E[|X_n|]$ approaches 0, then X_n approaches 0 in probability.

(b) Fix $\epsilon > 0$ and define a new random variable X_n^{ϵ} as follows. We have $X_n^{\epsilon} = \epsilon$ whenever $|X_n| \leq \epsilon$, and $X_n^{\epsilon} = c$ whenever $|X_n| > \epsilon$. Then, it is always true that $|X_n| \leq X_n^{\epsilon}$ and therefore

$$
E[|X_n|] \le E[X_n^{\epsilon}] = \epsilon P(|X_n| \le \epsilon) + cP(|X_n| > \epsilon)
$$

Taking limits as n goes to infinity, we get

$$
\lim_{n} E[|X_n|] \le \epsilon,
$$

and since this holds for all $\epsilon > 0$, we get $\lim_{n} E[|X_n|] = 0$.

(c) (i) Consider the Lebesgue probability space $([0, 1], \mathcal{B}, \lambda)$. Let $X_n =$ $[0, \frac{1}{n}]$. For all $\omega \in (0, 1]$ there exists $n \in N$ such that $1/n < \omega$. Thus $X_n \stackrel{\text{a.s.}}{\rightarrow} 0$ and for all $n \mathbb{P}(X_n = 1) = E[X_n] = 1/n$.

(ii) Let $\{X_n\}$ be independent. Then $\{X_n = 1\}$ occurs infinitely often by the Borel-Cantelli Lemma, as

$$
\sum_{i=1}^{\infty} P(X_n = 1) = \sum_{n=1}^{\infty} \frac{1}{n} = \infty,
$$

and the events $\{X_n = 1\}$ are independent. Hence X_n cannot converge to 0.

Exercise 5. Let X_1, X_2, \ldots be i.i.d. exponential random variables with parameter $\lambda = 1$. Let $S_n = X_1 + \cdots + X_n$. Let $a > 1$. What is the Chernoff upper bound for $\mathbb{P}(S_n \geq na)$?

Solution: To use Chernoff's bound as stated in the lecture notes, we need to work with random variables that have mean 0. Let $Y_i = X_i - 1$, and $S'_n =$ $Y_1 + \cdots + Y_n$. Then

$$
P(S_n \ge na) = P(S'_n \ge n(a-1)).
$$

Now the moment generating function of the X_i is $1/(1-s)$, so Y_i has moment generating function $e^{-s}/(1-s)$. We must optimize

$$
\sup_{s\geq 0} s(a-1) - \log \frac{e^{-s}}{1-s},
$$

The optimum occurs at $s = (a-1)/a$, and equals $a - 1 - \log(a)$ $a - 1 - \log(a)$ $a - 1 - \log(a)$. So,

$$
P(S_n \ge na) \le e^{-n(a-1-\log(a))} = a^n e^{-n(a-1)}.
$$

Exercise 6. Let X_1, X_2, \ldots be a sequence of i.i.d. random variables, uniformly distributed on the interval [0, 1]. For *n* odd, let M_n be the median of X_1, X_2, \ldots, X_n , i.e. the $(\frac{n+1}{2})$ order statistic $X^{(\frac{n+1}{2})}$. Show that M_n converges to 1/2, in probability.

Solution: Fix some $\epsilon > 0$. We will show that $\mathbb{P}(M_n > 1/2 + \epsilon)$ converges to zero. By symmetry, this will also imply that $\mathbb{P}(M_n < 1/2 - \epsilon)$ also converges to zero, and will establish the desired convergence.

Let N_n be the number of X_i s $(i = 1, \ldots, n)$ for which $X_i > 1/2 + \epsilon$. If $M_n > 1/2 + \epsilon$, then $N_n/n > 1/2$. But $\mathbb{E}[N_n/n] = 1/2 - \epsilon$, so that $\mathbb{P}(N_n/n)$ $1/2$ \rightarrow 0, by the weak law of large numbers.

Exercise 7. [Optional, not to be graded] Show that for every \mathbb{P}_X on $(\mathbb{R}, \mathcal{B})$ there exist a sequence $\mathbb{P}_{X_n} \stackrel{d}{\to} \mathbb{P}_X$ such that every \mathbb{P}_{X_n} has a continuous, bounded, infinitely-differentiable PDF. Steps:

- (i) Show $X_{\epsilon} = X + \epsilon Z \stackrel{d}{\to} X$ as $\epsilon \to 0$.
- (ii) Let $X \perp\!\!\!\perp Z$ and $Z \sim \mathcal{N}(0, 1)$. Show that CDF of X_{ϵ} is continuous (*Hint*: BCT) and differentiable (*Hint: Fubini*) with derivative

$$
f_{X_{\epsilon}}(a) = \mathbb{E}\left[f_Z\left(\frac{a-X}{\epsilon}\right)\frac{1}{\epsilon}\right].
$$

- (iii) Show that $a \mapsto f_{X_{\epsilon}}(a)$ is continuous.
- (iv) [Optional] Conclude the proof (*Hint*: derivatives of f_Z are uniformly bounded on \mathbb{R}).

Solution:

(i) Let Z be a random variable defined on the same probability space as X . Let $\delta > 0$ and WLOG assume $\delta < 1$, as $\{\varepsilon |Z| \geq x\} \subset \{\varepsilon |Z| \geq y\}$ for $x \geq y$, Therefore,

$$
\mathbb{P}(\varepsilon|Z| \ge \delta) = \mathbb{P}(Z \le -\delta/\varepsilon) + \mathbb{P}(Z \ge \delta/\varepsilon)
$$

$$
\le^{(a)} \mathbb{P}(Z \le -\delta/\varepsilon) + \mathbb{P}(Z < \delta^2/\varepsilon)
$$

$$
= F_Z \left(-\frac{\delta}{\varepsilon}\right) + 1 - F_Z \left(\frac{\delta^2}{\varepsilon}\right)
$$

$$
\to 0 + 1 - 1 = 0,
$$

where (a) follows since $\delta^2 < \delta$ for $\delta < 1$. Therefore, $\epsilon Z \to 0$ in probability. Thus, as convergence in probability is closed under addition, $X + \varepsilon Z \to X$ in probability and thusly $X + \varepsilon Z \to X$ in distribution.

(ii) For any measurable function g, as $X \perp \!\!\! \perp Z$,

$$
\int g(\gamma) \, \mathbb{P}_{X_{\varepsilon}}(d\gamma) = \int \int g(\alpha + \beta) \, \mathbb{P}_X(d\alpha) \, \mathbb{P}_{\varepsilon Z}(d\beta),
$$

where

$$
\mathbb{P}_{\varepsilon Z}(d\beta) = \frac{d}{d\beta} F_Z\left(\frac{\beta}{\varepsilon}\right) = \frac{1}{\varepsilon} f_Z\left(\frac{\beta}{\varepsilon}\right) \lambda(d\beta)
$$

and this integration makes sense and can be interchanged by Fubini's Theorem. Letting $g = \mathbb{1}_{(-\infty, z]}$

$$
F_{X_{\varepsilon}}(z) = \int_{(-\infty,z]} d\mathbb{P}_{X_{\varepsilon}}
$$

=
$$
\int_{-\infty,z]} \int_{(\infty,z]} (\alpha+\beta) f_{Z} \left(\frac{\beta}{\varepsilon}\right) \frac{1}{\varepsilon} \lambda(d\beta) \mathbb{P}_{X}(d\alpha)
$$

=
$$
\int_{-\infty,z]} \int_{(-\infty,z]} (\gamma) f_{Z} \left(\frac{\gamma-\alpha}{\varepsilon}\right) \frac{1}{\varepsilon} \lambda(d(\gamma-\alpha)) \mathbb{P}_{X}(d\alpha)
$$

=
$$
\int_{(-\infty,z]} \int_{-\infty,z]} f_{Z} \left(\frac{\gamma-\alpha}{\varepsilon}\right) \frac{1}{\varepsilon} \mathbb{P}_{X}(d\alpha) \lambda(d\gamma)
$$
 (Shift invariance)
=
$$
\int_{(-\infty,z]} \int_{-\infty,z]} F \left[f_{Z} \left(\frac{\gamma-\alpha}{\varepsilon}\right) \frac{1}{\varepsilon} \mathbb{P}_{X}(d\alpha) \lambda(d\gamma) \right]
$$

=
$$
\int_{(-\infty,z]} E \left[f_{Z} \left(\frac{\gamma-\alpha}{\varepsilon}\right) \frac{1}{\varepsilon} \right] \lambda(d\gamma).
$$

Let

$$
f_{X_{\varepsilon}}(a) := E\left[f_Z\left(\frac{a-X}{\varepsilon}\right) \frac{1}{\varepsilon}\right].
$$

Thus

$$
F_{X_{\varepsilon}}(z) = \int_{-\infty}^{z} f_{X_{\varepsilon}}(\gamma) \,\lambda(d\gamma).
$$

From part (iii) $f_{X_{\varepsilon}}$ is continuous and therefore this integral agrees with the Riemann integral. Hence, by the fundamental theorem of calculus, $F_{X_{\varepsilon}}(z)$ is differential with derivative

$$
\frac{d}{dz}F_{X_{\varepsilon}}(z)=f_{X_{\varepsilon}}(z).
$$

- (iii) Limits and integration can be interchanged using the bounded convergence theorem.
- (iv) Same as part (iii).

MIT OpenCourseWare <https://ocw.mit.edu>

6.436J / 15.085J Fundamentals of Probability Fall 2018

For information about citing these materials or our Terms of Use, visit: <https://ocw.mit.edu/terms>