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MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

6.436J/15.085J Fall 2018 
Problem Set 9 

Readings:
Notes from Lectures 16-19. 
[GS], Section 7.1-7.6
[Cinlar], Chapter III 

Exercise 1. We study convergence of algebraic operations: 

(a) Show that
i.p. i.p. i.p.

Xn → X, Yn → Y ⇒ XnYn → XY

(Hint: reduce to 
a→.s..) 

(b) Show, however, that

Xn →
d 
X, Yn →

d 
Y ⇏ XnYn →

d 
XY

(c) Assume Xn ⊥⊥ Yn and X ⊥⊥ Y . Show  that  then

Xn →
d 

X, Yn →
d 

Y ⇒ XnYn →
d 
XY

(Hint: reduce to 
a→.s..) 

Solution: 

(a) Writing the product as a sum of squares

(Xn + Yn)
2 − (Xn − Yn)

2 

XnYn = . 
4 

Therefore, by the triangle inequality, 

|Xn + Yn|2 + |Xn − Yn|2 

|XnYn| ≤ . 
4 

Thus 
! ! 
|Xn + Yn|2 ε |Xn − Yn|2 ε

P (|XnYn| > ε) ≤ > + > ,
4 2 4 2 

1 

) )
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and it suffices to show that convergence in probability is closed under scalar
multiplication, addition and squares. Addition is given in the lecture notes,
scalar multiplication follows since, for all c ≥ 0,

P (c|X| > ε) P (|X| > ε/c) ,

and squaring follows since 

|X|2 √
P > ε = P |X| > ε ,

i.e. by choose ε appropriately.

(b) Consider the probability space ([0, 1], B, λ). Let

[0,1/2] n odd n even [0,1/2] Xn = Yn = . 
(1/2,1] n even (1/2,1] n odd 

Then for all n, Xn and Yn are Bernoulli 1/2 random variables and thusly 
converge in distribution to a Bernoulli 1/2 random variable. However, 
XnYn ≡ 0 and the product of Bernoulli random variables is not identically
zero. 

(c) As Xn → X and Yn → Y

lim FXn,Yn (x, y) =  lim  FXn (x)FYn (y) (Independence)
n→∞ n→∞ 

= lim FXn (x) lim FYn (y) (Independence) 
n→∞ n→∞ 

=(a) FX (x)FY (y) 

= FX,Y (x, y), 

where (a) holds at all continuity points of FX and FY or equivalent of FX,Y . 
Therefore, (Xn, Yn) → (X, Y ) in distribution. Let f : R → R be a bounded
continuous function and qn, q and pn, p be the quantile functions for the 
{Xn}, X, the  {Yn} and Y respectively, i.e. qn → q almost everywhere
pn → p almost everywhere and 

Xn ∼ qn(U) X ∼ q(U) Yn ∼ pn(V ) Y ∼ p(V )

for independent random variables U and V . Therefore,  qn(U)pn(V ) →

2 

{

1

{

( )( )
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q(U)p(V ) almost everywhere and by the BCT 

lim E [f(XnYn)] = lim E [f(qn(U)pn(V ))] 
n→∞ n→∞ 

( ) 
= E lim f(qn(U)pn(V )) (BCT) 

n→∞ 

= E [f(q(U)p(V ))] (f continuous ) 
= E [f(XY )] . 

Hence XnYn → XY in distribution.

Exercise 2 (Metrization of convergence in probability). Define a pseudo-metric 
on the space of random-variables: 

|X − Y | 
.

1 +  |X − Y |

Show Xn 
i → 
.p. 

X iff d(Xn,X) → 0.

Solution: Let ε > 0 and WLOG assume ε < 1. Then,

and 

By Markov’s inequality 

Therefore, convergence in the metric implies convergence in probability.  For  the
other direction let 

|X − Y |
Z = 

1 +  |X − Y |
and 

Zε = ε {|Z| < ε} + {|Z| ≥ ε}.

3 

d(X,Y ) , E

{|X − Y | ≥ ε} =

{ |X − Y |
1 + |X − Y | ≥

ε

1 + ε

}

,

{ |X − Y |
1 + |X − Y | ≥ ε

}

=

{

|X − Y | ≥ ε

1− ε

}

P (|X − Y | ≥ ε) = P

( |X − Y |
1 + X − Y | ≥

ε

1 + ε

)

≤ 1

ε

+ ε
E

|
[ |X − Y |
1 + |X − Y |

]

=
1 + ε

ε
d(X,Y ).
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Since Z ≤ 1, then  Z ≤ Zε and

Hence convergence in probability implies convergence in the metric.

Exercise 3 (20 pts). Prove Cauchy criterions for convergence a.s. and i.P.: 

(i) Show that Xn converges almost surely iff

ϵ > 0 P[sup |Xn+k −Xn| > ϵ] → 0 n → ∞
k≥0 

(ii) Show that Xn converges in probability iff

ϵ > 0 sup  P[|Xn+k −Xn| > ϵ] → 0 n → ∞
k≥0 

Solution: 

(i) Equivalently, for all ε > 0 there exists N ∈ N so that for all n ≥ N

k≥0 

Let ε > 0. Suppose  Xn converges almost surely to some random variable 
X. Then,  there  exists  a  measurable  set  E with P(E) < ε so that Xn ⇒ X
uniformly on Ec. Therefore,  there  exists  N ∈ N so that for all n ≥ N and
for all ω ∈ Ec 

|Xn(ω) −X(ω)| ≤ ε.

Hence, 

Conversely suppose the Cauchy criterion is satisfied. For all k, supk≥0|Xn+k−
Xn| ≥ |Xn+k −Xn|. Therefore,  for  all  k, 

4 

d(X,Y ) = E [Z]

= ε+ P |X − Y | ≥ ε

1− ε

≤ E [Zε]

= E [ε {|Z| < ε}+ {|Z| ≥ ε}]
≤ ε+ P (

(

|Z| ≥ ε)
)

.

∀

∀

P sup

)

|Xn+k −Xn| > ε < ε.

P sup
k≥0

|Xn+k −Xn| > ε

)

= P(E) < ε.

P (|Xn+k −Xn| > ε) ≤ P sup|Xn+k −Xn| > ε

)

.

)

)

)
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Hence 

sup P (|Xn+k − Xn| > ε) ≤ P sup|Xn+k − Xn| > ε ,
k≥0 k≥0 

and thusly this condition is stronger than the condition in part (ii). There-
fore, by part (ii) {Xn} converges in probability to a random variable X.
The set of points where Xn does not converge to X is 

and by continuity of probability 

Thus it suffices to show that for all ε > 0 there exists an N ∈ N so for all
n ≥ N 

P sup|Xk − X| > ε < ε.
k≥n 

By the triangle inequality 

|Xk − X| ≤ |Xk − Xn| + |Xn − X|,

and thus 

sup|Xk − X| ≤ sup|Xk − Xn| + |Xn − X|
k≥n k≥n 

≤ sup|Xn+k − Xn| + |Xn − X|.
k≥0 

Choose N1 to satisfy the Cauchy criterion for ε/2 and N2 for the conver-
gence in measure for ε/2. Let  N = max{N1, N2}, then  for  all  n ≥ N

ε ε 
P sup|Xk − X| > ε ≤ P sup|Xn+k − Xn| > +P |Xn − X| > < ε

2 2 k≥n k≥0 

as desired. 
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)

)

{Xn 6→ X} =
⋃

ε>0

∞
⋂

n=1

{sup
k≥n

|Xk −X| > ε},

P

∞
⋂

n=1

{

sup
k≥n

})

|Xk −X| > ε = lim
n→∞

P sup
k≥n

)

|Xk −X| > ε .

)

)

)

)

)

)

)

)

)

)
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(ii) Suppose that the sequence satisfies the Cauchy criterion. Then, there exists
a subsequence  {Xnk } such that, if Ek = {|Xnk − Xnk+1 | ≥ 2−k}, then
P(Ek) ≤ 2−k. Let  Fk j Ej . For  ω ∈/ Fk, and  i ≥ j ≥ k, we  have  = ∪∞ 

=k 

by the definition of the subsequence. This means that {Xnk } is pointwise
Cauchy on F c. Let  F = ∩∞ Fk = lim  sup  Ek, and  note  that  P(F ) = 0.k k=1
Let us define a random variable X such that on X(ω) = 0  for all ω ∈ F ,
and X(ω) =  lim  Xnk (ω) for all ω ∈/ F . Then  Xnk → X a.s. and thus
Xnk → X i.p. Finally, we have 

{|Xn − X| ≥ ϵ} ⊂ {|Xnk − Xn| ≥ ϵ/2} ∪ {|Xnk − X| ≥ ϵ/2},

and the right-hand side can be made arbitrarily small with large k and n, 
and thus we have convergence in probability of Xn to X. 
Conversely, for a >  0 and m, n ∈ N, let  En(a) =  {ω : |Xn(ω)−X(ω)| ≥
a} and Fm,n(a) =  {ω : |Xm(ω) − Xn(ω)| ≥ a}. Then,  for  every  a >  0
and every m, n, we  have  

Fm,n(a) ⊂ Em(a/2) ∪ En(a/2).

In fact, if ω is neither in Em(a/2) nor in En(a/2), then  |Xm(ω)−X(ω)| <
a/2 and |Xn(ω) − X(ω)| < a/2, so  that  |Xm(ω) − Xn(ω)| ≤ |Xm(ω) −
X(ω)|+|Xn(ω)−X(ω)| < a/2+a/2 =  a so |Xm(ω)−X(ω)| < a, which
shows ω ∈/ Fm,n(a). In  virtue  of  the  monotonicity  and  the  subadditivity  of
the measure, we also have 

0 ≤ P(Fm,n(a)) ≤ P(Em(a/2)∪En(a/2)) ≤ P(Em(a/2))+P(En(a/2)).
(1) 

Fix a >  0. Since  Xn → X in probability, for every ϵ > 0 there exists k
such that 

n > k  ⇒ P(En(a/2)) < ϵ/2. (2) 

Then, for m > k  and n > k, it  follows  from  (1)  and  (2)  that

P(Fm,n(a)) < ϵ/2 +  ϵ/2 =  ϵ 

which means limm,n→∞P(Fm,n(a)) = 0. Since  this  holds  for  every  a >
0, it  follows  that  the  Cauchy  criterion  is  satisfied.  

6 

j

|Xnj
(ω)−Xni

(ω)| ≤
i−
∑

1

l=j

|Xnl+1
(ω)−Xnl

(ω)| ≤ 21−j

https://�/Fm,n(a).In


Exercise 4. Let {Xn} be a sequence of random variables defined on the same
probability space. 

i.p.(a) Show E[|Xn − X|] → 0 implies Xn → X.

i.p. (b) Suppose that Xn → 0 and that for some constant c, we  have  |Xn| ≤ c, for
all n, with  probability  1.  Show  that  

lim E[|Xn|] = 0.
n→∞ 

(c) Suppose that each Xn can only take the values 0 and 1 and, that P(Xn =
1) = 1/n.

(i) Give an example in which we have almost sure convergence of Xn to
0.

(ii) Give an example in which we do not have almost sure convergence of
Xn to 0.

Solution: 

(a) Follows from Markov’s inequality

E[|Xn|]
P(|Xn − 0| ≥ ϵ) ≤ , 

ϵ 

Therefore, if E[|Xn|] approaches 0, then  Xn approaches 0 in probability.

(b) Fix ϵ > 0 and define a new random variable Xϵ as follows. We have Xϵ = ϵ n n 
whenever |Xn| ≤ ϵ, and  Xϵ = c whenever |Xn| > ϵ. Then,  it  is  alwaysn 
true that |Xn| ≤ Xϵ and therefore n 

E[|Xn|] ≤ E[Xϵ ] =  ϵP (|Xn| ≤ ϵ) +  cP (|Xn| > ϵ)n 

Taking limits as n goes to infinity, we get 

lim E[|Xn|] ≤ ϵ,
n 

and since this holds for all ϵ > 0, we  get  limn E[|Xn|] = 0.

(c) (i) Consider the Lebesgue probability space ([0, 1], B, λ). Let  Xn =

[0, 1 ]. For  all  ω ∈ (0, 1] there exists n ∈ N such that 1/n < ω.
a.s. Thus 

n 

Xn → 0 and for all n P(Xn = 1)  =  E[Xn] = 1/n.

7 
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(ii) Let {Xn} be independent. Then {Xn = 1} occurs infinitely often by
the Borel-Cantelli Lemma, as

and the events {Xn = 1} are independent. Hence Xn cannot converge
to 0. 

Exercise 5. Let X1,X2, . . .  be i.i.d. exponential random variables with param-
eter λ = 1. Let  Sn = X1 + · · · + Xn. Let  a >  1. What  is  the  Chernoff  upper
bound for P(Sn ≥ na)? 

Solution: To use Chernoff’s bound as stated in the lecture notes, we need to
′ work with random variables that have mean 0. Let  Yi = Xi − 1, and  S =n 

Y1 + · · · + Yn. Then

′ P (Sn ≥ na) =  P (S ≥ n(a− 1)).n 

Now the moment generating function of the Xi is 1/(1 − s), so  Yi has moment
generating function e−s/(1 − s). We  must  optimize  

−se 
sup s(a− 1) − log , 

1 − ss≥0 

The optimum occurs at s = (a− 1)/a, and  equals  a− 1 − log(a). So,

−n(a−1−log(a)) n −n(a−1) P (Sn ≥ na) ≤ e = a e .

Exercise 6. Let X1,X2, . . . be a sequence of i.i.d. random variables, uniformly 
distributed on the interval [0, 1]. For  n odd, let Mn be the median of X1,X2, . . . ,Xn, 

2 i.e. the (n+1 ) order statistic X( n+1 ). Show  that  Mn converges to 1/2, in proba-2 
bility. 

Solution: Fix some ϵ > 0. We  will  show  that  P(Mn > 1/2 +  ϵ) converges to 
zero. By symmetry, this will also imply that P(Mn < 1/2 − ϵ) also converges
to zero, and will establish the desired convergence.

Let Nn be the number of Xis (i = 1, . . . , n) for which  Xi > 1/2 +  ϵ. If
Mn > 1/2 +  ϵ, then  Nn/n > 1/2. But  E[Nn/n] = 1/2 − ϵ, so  that  P(Nn/n >
1/2) → 0, by  the  weak  law  of  large  numbers.  

8 

∞
∑

i=1

P (Xn = 1) =
∞
∑

n=1

1

n
= ∞,

https://log(a).So
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Exercise 7. [Optional, not to be graded] Show that for every PX on (R,B)
d there exist a sequence PXn → PX such that every PXn has a continuous,

bounded, infinitely-differentiable PDF. Steps: 

d (i) Show Xϵ = X + ϵZ → X as ϵ → 0.

(ii) Let X ⊥⊥ Z and Z ∼ N (0, 1). Show  that  CDF  of  Xϵ is continuous (Hint:
BCT) and differentiable (Hint: Fubini) with  derivative  

(iii) Show that a ∞→ f (a) is continuous.Xϵ 

(iv) [Optional] Conclude the proof (Hint: derivatives of fZ are uniformly bounded
on R).

Solution: 

(i) Let Z be a random variable defined on the same probability space as X.
Let δ > 0 and WLOG assume δ < 1, as  {ε|Z| ≥ x} ⊂ {ε|Z| ≥ y} for
x ≥ y, Therefore,  

P (ε|Z| ≥ δ) = P (Z ≤ −δ/ε) + P (Z ≥ δ/ε)

→ 0 + 1− 1 = 0,

where (a) follows since δ2 < δ for δ < 1. Therefore,  εZ → 0 in
probability. Thus, as convergence in probability is closed under addition, 
X + εZ → X in probability and thusly X + εZ → X in distribution.

(ii) For any measurable function g, as  X ⊥⊥ Z ,

g(γ)PXε (dγ) = g(α + β)PX (dα)PεZ (dβ), 

where 
! ! 

d β 1 β 
PεZ (dβ) = FZ = fZ λ(dβ) 

dβ ε ε ε 

9 

fXǫ(a) = E

[

fZ

(

a−X

ǫ

)

1

ǫ

]

.

≤(a)
P
(

(Z ≤
)

−δ/ε) + P
(

Z < δ2/ε
)

= FZ −δ

ε
+ 1− FZ

(

δ2

ε

)

) )

∫ ∫ ∫
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and this integration makes sense and can be interchanged by Fubini’s The-
orem. Letting g = (−∞,z]

λ(dβ)PX (dα)  

λ(d(γ − α))PX (dα)

λ(dγ)PX (dα) (Shift invariance) 
 

Let 

Thus 

From part (iii) fXε is continuous and therefore this integral agrees with the 
Riemann integral. Hence, by the fundamental theorem of calculus, FXε (z) 
is differential with derivative 

d 
FXε (z) = fXε (z). dz 

(iii) Limits and integration can be interchanged using the bounded convergence
theorem.

(iv) Same as part (iii).

10 

FXε(z) =

∫

(−

1

∞,z] dPXε

=

∫ ∫

(−∞,z](α+ β)fZ

(

β

ε

)

1

ε

=

∫ ∫

(−∞,z](γ)fZ

(

γ
)

1

ε

=

∫ ∫

(−∞,z](γ)fZ

(

γ

− α

ε

− α

ε

)

1

=

∫

(−∞,z]

∫

fZ

(

γ − α

ε

)

1

ε

ε

PX(dα)λ(dγ)

=

∫

(−∞,z]
E

[

fZ

(

γ −X

ε

)

1

ε

]

λ(dγ).

fXε(a) := E

[

fZ

(

a−X

ε

)

1

ε

]

.

FXε(z) =

∫ z

−∞

fXε(γ)λ(dγ).
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