MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.436J/15.085] Fall 2018
Problem Set 8

Readings:
Notes from Lecture 14 and 15.
[GS]: Section 4.9, 4.10, 5.7-5.9

Exercise 1. Let ¢4 (t) = E[e*4] be a characteristic function of .v. A.

(a) Find ¢x(t) if X is a Bernoulli(p) random variable.
(b) Suppose that ¢x, = cos(t/2"). What is the distribution of X, ?

(c) Let X1, Xs,... be independent and let S, = X; + --- + X,,. Suppose
that .S,, converges almost surely to some random variable .S. Show that

¢s(t) = [1i21 o, (1)-
(d) Evaluate the infinite product [ [, cos(t/2"™). Hint: Think probabilisti-

cally; the answer is a very simple expression.

Solution:
(a) ,
ox(t) = (1 —p) + pe™.

(b) Since
it/2" 4 pit/2"
ox, = S T—

X, has to be 1/2™ with probability 1/2, and —1/2" with probability 1/2.

(c) The interchange of limit and expectation can be justified by appealing to
the dominated convergence theorem, since || = 1 and |¢?*%| = 1.

(d) The sum of the random variables X,, approaches a uniform random vari-
able in [—1, 1] almost surely. By part (c), the product of cost/2" is the
characteristic function of U[—1, 1] , which is
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Exercise 2. Let X be a random variable with mean, variance, and moment gen-
erating function), denoted by E[X], var(X), and Mx(s), respectively. Simi-
larly, let Y be a random variable associated with E[Y], var(Y’), and My (s).
Each part of this problem introduces a new random variable ), H, G, D. De-
termine the means and variances of the new random variables, in terms of the
means, and variances of X and Y.

(a) Mg(s) = [Mx(s)]°.

(b) My (s) = [Mx(s)]*[My(s)]*.
(c) Mg(s) = €% Mx(s).

(d) Mp(s) = Mx(6s).

Solution:

(a) The random variable () is the sum of 5 independent random variables,
each distributed as X. Thus, E[Q] = 5E[X], var(Q) = bvar(X).

(b) The random variable H is the sum of three independent random vari-
ables distributed as X, and another two independent random variables
distributed as Y. Thus, E[H| = 3E[X] + 2E[Y], var(H) = 3var(X) +
2var(Y').

(c) Multiplying a transform by e®® corresponds to adding a to a random vari-
able. Thus, E[G] = E[X] + 6, var(G) = var(X).

(d) Replacing s by sa corresponds to replacing a random variable X by a X.
Thus, E[D] = 6E[X], var(D) = 36var(X).

Exercise 3. A random (nonnegative integer) number of people K, enter a restau-
rant with n tables. Each person is equally likely to sit on any one of the tables,
independently of where the others are sitting. Give a formula, in terms of the
moment generating function M (+), for the expected number of occupied tables
(i.e., tables with at least one customer).

Solution: Let D be the number of occupied tables. Let Xi,..., X, be the
respective indicator variables of each table, that is, X; = 1 if there is at least one
person at at table ¢, and X; = 0 otherwise. Note that D = X; + - - -+ X,,. Thus



we have:

<[ ()]

(letting s = log((n — 1)/n)) = n—n-E[e*X]
= n—n- Mg (log((n—1)/n)).

Exercise 4. (Problem 7, Section 4.9, [GS]): Let the vector X,.,1 < r < n have
a multivariate normal distribution with zero means and covariance matrix V' =
(vij). Show that, conditional on the event) 7 | X, = =, X; 4N (a,b), where
a= (ps/t)r,b=s%(1 — p?) and s% = vyy,t? = Zij vij, p =y ; Vir/(st).

Solution: Let S, = >, xx. Since the mapping (X1, Xo,...,X,) —
(X1, S,) is a linear mapping, and the family of multivariate normal distribu-
tions is closed under linear mappings, we find that (X7, .S,,) is a bivariate nor-
mal distribution. Furthermore, E[X1] = 0, E[S,] = 0, var(X1) = v11 = 5%,
var (Sp) =>_ . ; E[X: X;] =37, s vij = t2,and cov (X1, S,) = 2} vi It
follows from the definitions that the correlation of X and Sy, is (3_;_; v1 ) /(st).
The desired result follows from the basic properties of bivariate normals proven
in the lecture notes.

Exercise 5. Suppose that for every k, the pair (Xj,Y') has a bivariate normal
distribution. Furthermore, suppose that the sequence X}, converges to X, almost
surely. Show that (X,Y) has a bivariate normal distribution. Hint: First show
that if X} is a sequence of normally distributed random variables which con-
verges to X almost surely, then X has to be normally distributed as well. Then
use the “right” definition of the bivariate normal.

Solution: For any a,b € R, aX; +bY 25 aX +0Y = aX; + bY 4,
aX +bY. Let Z;, = a X}, 4 bY be a sequence of normal random variables with
variance az. As Xj and Y have zero mean, their corresponding characteristic

functions are
o (t) = exp (-;t > -
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Suppose, for all t, ¢ (t) — ¢(t) for some continuous function ¢(¢). Consider
2
the sequence ¢ (1) = exp (— %’“ ). If this sequence convergences then the com-

position with any continuous function converges. In particular, —2log ¢ (1) =
o converges.
Suppose a]% — 00, then

1 t=0
t) = .
o) {0 else
By the inversion theorem, the PDF of the resulting random variable is one over
the entire real line, but this does not integrate to one, a contradiction. Therefore,
the 07 — o2 for some 02 € [0, 00) and Z = a X +bY is normal, i.e. aX +bY ~
N(0,0?). Hence, (X,Y) has a bivariate normal distribution.

Exercise 6. Suppose that X, Z1, . .., Z, have a multivariate normal distribution,
and X has zero mean. Furthermore, suppose that 71, ..., Z,, are independent.
Show that E[X | Z1,...,Z,] =>_ | E[X | Z;]. Is this result true without the

multivariate normal example? (Prove or give a counterexample.)

Solution: Solution: Let Z = (Zy,..., Z,), the multivariate normal. By the
conditional expectation formula for multivariate normals

EX | Z1,.... 20 = VxzVy(Z — pz)

Note that Vyz isa 1 X n row vector, Vzz is an n X n matrix, and Z — uz is an
n X 1 column vector. Now, by independence of Z;, V7 is the diagonal matrix
whose i’th diagonal entry is var(Z;). Thus, we can rewrite the right hand side
above as,

EX | Z1,.... %0 = Y Vxz,(Zi — pz,)/var(Z)
=1

= ZE[X|ZZ-].

Exercise 7. Let Y7,...,Y, be independent N(0,1) random variables, and let
X; = ZZ}ZI cjr Yy, for some constants c;,.. Show that

CjrCir
E[X; | X)] = (22’“) Xy,

r “kr
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Solution: If (X,Y") are jointly normal with means px, iy respectively, and
cov(X,Y) = Vyy, and var(Y) = Vyy, then E[X|Y] = pux + Vxy Vyy (Y —
wy ). Note that in our case, since the Y,. are independent with zero mean, the X;
are also zero mean. Then, we have:

E[X;X:] = px, + VieVig' (Xe — p2)
= E[Xij]E[Xka]lek
:}1,7‘2:1 Cjry CkT‘QE[YTl Y;"2]
= n 2 Xk
Erzl CkrE[Y;”Q} + r1#ry Chr CkmE[YT‘l Yo, ]
= <ZT er;kr> Xk;
r Ckr



Exercise 8. [Optional, not for grade] Let X Y be i.i.d. with finite second
moments. Suppose that X 4+ Y and X — Y are independent. Show that they
must be Gaussian. (Hint: Derive a second order differential equation on ¢ x (¢).)

Solution: Let ¢(t) = ¢x(t) = ¢y (t). Using both independence relations and
properties of characteristic functions

o((a+b)t)o((a = b)t) = Gatp)x (1) P(a—p)y ()
= Plat+t) X +a-byy (1) (X LY)
= Ga(X+Y)+b(x -y (1)
= dax+v)B)Ppx-1(t) (X +Y L X-Y)
= Gax (t)Pay () Pox (t)p—py (t) (X LLY)
= ¢(at)*p(bt)p(—bt).

In other words, as a and b were arbitrary,

Ot + u)(t —u) = ¢(t)*¢(u)p(—u).

By assumption X and Y have finite second moment and thus ¢ is twice contin-
uously differentiable. Differentiating both sides with respect to u

¢'(t +w)o(t —u) — §(t + )¢/ (t —u) = d(t)* [¢' (w)d(—u) — $(w)d (—u)],
and
¢"(t +uw)p(t — u) — ¢'(t+u)g' (t — ) — ¢/ (¢t +w)d (t — u) + Gt + u)g" (¢t — u)
= 3(t)* [¢" (W) (—u) — ¢/ (u)¢' (—u) = ¢ (u)¢' (—u) + d(u)¢" (—u)].
Evaluating at v = 0
2 (0" (t)p(t) — ¢ (1)%) = 6(t)*2 (¢"(0)$(0) — ¢'(0)*)
= ¢(1)*2 (¢"(0) — ¢'(0)*) .

The resulting differential equation is

¢"(t)p(t) — & (t)* — (¢ (0) — ¢/ (0)*)p(t)* = 0.

Consider the test function

Ft) = gicitteat?



The first and second derivate for f are

() = (ic1 + 202t)6i01t+02t2

f//(t) — 2026i61t+02t2 4 (Z'cl 4 202t)26i61t+02t2

and evaluating at zero
f(0)=ic1  f"(0) = 2¢cy — c%.
Therefore
FI@E) ) = /(1) = (f7(0) = £(0)%) f(1)?
— (2026i61t+62t2 4 (i61 4 262t)26i01t+82t2> 6i01t+02t2
— (ic1 + 262t)2€2(i61t+02t2) —(2¢0 — 3 + C%)eQ(iCIHCQtQ)
= (202 + (ic1 + 2c9t)? — (ic1 + QCgt)2 — 202) 2licit+est?)
=0.
Hence f(t) satisfies the differential equation and
d)(t) — €iclt+62t2.
From properties of characteristic functions
¢/(0) = iE[X] ¢"(0) = ~E[X] = —var(X) — B[X".

Thus
a1 = E[X] c2=—var(X)/2.

Therefore,
var(X) 42
2

¢(t) _ €iE[X]t—
and by the inversion theorem X and Y are Gaussion.

Exercise 9. [Optional, not for grade] (Problem 20 in p. 142, Section 4.14
of [GS]): Suppose that X and Y are independent and identically distributed,
and not necessarily continuous random variables. Show that X + Y cannot be
uniformly distributed on [0, 1].



Solution: Suppose X and Y are i.i.d. and Z = X + Y is uniform on [0, 1].
Then X, Y € [0,1/2] almost everywhere, or else Z ¢ [0, 1] with positive prob-
ability. Let z € [0,1/4]. Then, as X,Y > 0 a.e.,

2=P(Z<2)<P(X<2Y <2)=PX <2)P(Y <2)=PX < 2)?
and similarly, as X, Y < 1/2ae.,
2=P(Z>1-2)<P(X>1/2—2Y >1/2—2) <P(X >1/2 - 2)%
Combining provides
P(X <2),P(X>1/2—2) >z €))
Moreover, noting both the upper and lower a.e. bounds of X and Y

2:=P(1/2—2<Z<1/2+2)
>P(X>1/2—-2Y<z)+P(Y >1/2—2X <2)
=2P(X >1/2—2)P(X < 2z)

>2Vz\z

= 2z.
Thus all inequalities are equalities, and in particular
P(X>1/2)P(X <z) =z,

and, in conjunction with (1), this implies that (1) holds with equality, namely
IP’(ng):IP)(X>—z>:\/§. 2)
Therefore,

1 1 1
IP(X,Y§8,X+Y>8)ZIP’<—<X§

oo



This provides

1
Lop(z<!
8 8
1 1 1 1
=P(X<-Y<-)-P(X,Y<-,X+Y>-
( =% —8> < Syt TS
8 8) 8

a contradiction.
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