
� �
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

6.436J/15.085J Fall 2018 
Problem Set 8 

Readings: 
Notes from Lecture 14 and 15. 
[GS]: Section 4.9, 4.10, 5.7-5.9 

Exercise 1. Let φA(t) =  E[eitA] be a characteristic function of r.v. A.

(a) Find φX (t) if X is a Bernoulli(p) random variable.

(b) Suppose that φXn = cos(t/2n). What is the distribution of Xn?

(c) Let X1, X2, . . .  be independent and let Sn = X1 + · · · + Xn. Suppose
that Sn converges almost surely to some random variable S. Show that!∞ φS (t) =  φXi (t).i=1 

!∞ (d) Evaluate the infinite product cos(t/2n). Hint: Think probabilisti-n=1 
cally; the answer is a very simple expression.

Solution: 

(a) 
itφX (t) = (1  − p) +  pe .

(b) Since
it/2n it/2ne + e 

φXn = , 
2 

Xn has to be 1/2n with probability 1/2, and −1/2n with probability 1/2.

(c) The interchange of limit and expectation can be justified by appealing to
itS | = 1  and |eitSn | = 1.the dominated convergence theorem, since |e 

(d) The sum of the random variables Xn approaches a uniform random vari-
able in [−1, 1] almost surely. By part (c), the product of cos t/2n is the
characteristic function of U [−1, 1] , which is 

" 1 −it
itx 1 
e dx = 

2 −1 

eit − e
2it 

= 
sint 

, 
t 

so 
∞# t sint 

cos( ) =
2n t 

. 
n=1 
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Exercise 2. Let X be a random variable with mean, variance, and moment gen-
erating function), denoted by E[X], var(X), and MX (s), respectively. Simi-
larly, let Y be a random variable associated with E[Y ], var(Y ), and MY (s). 
Each part of this problem introduces a new random variable Q, H , G, D. De-
termine the means and variances of the new random variables, in terms of the 
means, and variances of X and Y . 

5 (a) MQ(s) = [MX (s)] . 

2 (b) MH (s) = [MX (s)]3 [MY (s)] . 

(c) MG(s) = e6 sMX (s). 

(d) MD(s) = MX (6s). 

Solution: 

(a) The random variable Q is the sum of 5 independent random variables, 
each distributed as X . Thus, E[Q] = 5E[X], var(Q) = 5var(X). 

(b) The random variable H is the sum of three independent random vari-
ables distributed as X , and another two independent random variables 
distributed as Y . Thus, E[H] = 3E[X] + 2E[Y ], var(H) = 3var(X) +  
2var(Y ). 

(c) Multiplying a transform by esa corresponds to adding a to a random vari-
able. Thus, E[G] = E[X] + 6, var(G) = var(X). 

(d) Replacing s by sa corresponds to replacing a random variable X by aX . 
Thus, E[D] = 6E[X], var(D) = 36var(X). 

Exercise 3. A random  (nonnegative integer)  number of  people  K, enter a restau-
rant with n tables. Each person is equally likely to sit on any one of the tables, 
independently of where the others are sitting. Give a formula, in terms of the 
moment generating function MK (·), for the expected number of occupied tables 
(i.e., tables with at least one customer). 

Solution: Let D be the number of occupied tables. Let X1, . . . , Xn be the 
respective indicator variables of each table, that is, Xi = 1 if there is at least one 
person at at table i, and Xi = 0 otherwise. Note that D = X1 + · · ·+Xn. Thus 
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we have: 

E[D] =  E[E[D|K]]

= E[E[X1 + · · ·+Xn|K]]

= n · E[E[Xi|K]
  

= n · E 1−

sK ] (letting s = log((n − 1)/n)) = n − n · E[e 

= n − n ·MK log((n − 1)/n) .

Exercise 4. (Problem 7, Section 4.9, [GS]): Let the vector Xr, 1 ≤ r ≤ n have
a multivariate normal distribution with zero means and covariance matrix V = 
(vij ). Show that, conditional on the event n

i=1 Xr = x, X1 = 
d 
N(a, b), where

2 a = (ρs/t)x, b = s2(1− ρ2) and s = v11, t2 = ij vij , ρ = i vi1/(st).

n Solution: Let Sn = Since the mapping (X1, X2, . . . , Xn) →k=1 xk. 
(X1, Sn) is a linear mapping, and the family of multivariate normal distribu-
tions is closed under linear mappings, we find that (X1, Sn) is a bivariate nor-

2 mal distribution. Furthermore, E[X1] = 0, E[Sn] = 0, var(X1) = v1,1 = s ,
n var (Sn) =  E [XiXj ] = = t2, and cov (X1, Sn) = k=1 v1,k. Iti,j i,j vi,j

n follows from the definitions that the correlation of X1 and Sn is ( k=1 v1,k) /(st).
The desired result follows from the basic properties of bivariate normals proven 
in the lecture notes. 

Exercise 5. Suppose that for every k, the pair (Xk, Y  ) has a bivariate normal 
distribution. Furthermore, suppose that the sequence Xk converges to X , almost 
surely. Show that (X, Y ) has a bivariate normal distribution. Hint: First show 
that if Xk is a sequence of normally distributed random variables which con-
verges to X almost surely, then X has to be normally distributed as well. Then 
use the “right” definition of the bivariate normal. 

as d Solution: For any a, b ∈ ℜ, aXk + bY −→ aX + bY ⇒ aXk + bY −→
aX + bY . Let Zk = aXk + bY be a sequence of normal random variables with 
variance σk 

2 . As Xk and Y have zero mean, their corresponding characteristic
functions are 

σ2 

φk(t) = exp  − k t2 .
2 

3 

[ (
n− 1

)K ]
n[(n− 1

= n− n · E
n

)K ]
))

∑n

∑∑ ∑

∑ ∑ ∑∑
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Suppose, for all t, φk(t) → φ(t) for some continuous function φ(t). Consider
the sequence φk(1) = exp −σk 

2 

. If this sequence convergences then the com-2 

position with any continuous function converges. In particular, −2 log φk(1) =
σk 
2 converges. 

Suppose σ2 → ∞, thenk 

1 t = 0
φ(t) = . 

0 else 

By the inversion theorem, the PDF of the resulting random variable is one over 
the entire real line, but this does not integrate to one, a contradiction. Therefore, 
the σ2 → σ2 for some σ2 ∈ [0,∞) and Z = aX+bY is normal, i.e. aX+bY ∼k 
N (0,σ2). Hence, (X,Y ) has a bivariate normal distribution. 

Exercise 6. Suppose that X,Z1, . . . , Zn have a multivariate normal distribution, 
and X has zero mean. Furthermore, suppose that Z1, . . . , Zn are independent. 

n Show that E[X | Z1, . . . , Zn] = E[X | Zi]. Is this result true without thei=1 
multivariate normal example? (Prove or give a counterexample.) 

Solution: Solution: Let Z = (Z1, . . . , Zn), the multivariate normal. By the 
conditional expectation formula for multivariate normals 

E[X | Z1, . . . , Zn] =  VXZV
−1(Z − µZ)ZZ 

Note that VXZ  is a 1 ×n row vector, VZZ is an n×n matrix, and Z − µZ is an
n×1 column vector. Now, by independence of Zi, VZZ is the diagonal matrix
whose i’th diagonal entry is var(Zi). Thus, we can rewrite the right hand side 
above as, 

E[X | Z1, . . . , Zn] = VXZi (Zi − µZi )/var(Zi)
i=1 

= E[X|Zi].
i=1 

Exercise 7. Let Y1, . . . , Yn be independent N(0,1) random variables, and let 
n Xj = r=1 cjrYr, for some constants cjr. Show that 

cjrckrr E[Xj | Xk] = Xk. 2c r kr 
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Solution: If (X, Y ) are jointly normal with means µX , µY respectively, and 
cov(X, Y ) = VXY  , and var(Y ) = VY Y  , then E[X|Y ] = µX + VXY  V −1(Y −Y Y  
µY ). Note that in our case, since the Yr are independent with zero mean, the Xi

are also zero mean. Then, we have: 

E[Xj |Xk] =  µXj + VjkV −1(Xk − µ2)kk 

= E[XjXk]E[XkXk]
−1Xk

n 
r1,r2=1 cjr1 ckr2 E[Yr1 Yr2 ]

= 2 Xkn E[Yr2] + E[Yr1 Yr2 ] r=1 ckr r1≠r2 
ckr1 ckr2 

cjrckrr = 2 Xk. 
c r kr
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Exercise 8. [Optional, not for grade] Let X, Y be i.i.d. with finite second 
moments. Suppose that X + Y and X − Y are independent. Show that they
must be Gaussian. (Hint: Derive a second order differential equation on φX (t).) 

Solution: Let φ(t) =  φX (t) =  φY (t). Using both independence relations and 
properties of characteristic functions 

φ((a + b)t)φ((a − b)t) =  φ(a+b)X (t)φ(a−b)Y (t)

= φ(a+b)X+(a−b)Y (t) (X ⊥Y )

= φa(X+Y )+b(X−Y )(t)

= φa(X+Y )(t)φb(X−Y )(t) (X + Y ⊥X − Y )

= φaX (t)φaY (t)φbX (t)φ−bY (t) (X ⊥Y )

= φ(at)2φ(bt)φ(−bt).

In other words, as a and b were arbitrary, 

φ(t + u)φ(t − u) =  φ(t)2φ(u)φ(−u).

By assumption X and Y have finite second moment and thus φ is twice contin-
uously differentiable. Differentiating both sides with respect to u 

φ ′ (t + u)φ(t − u) − φ(t + u)φ ′ (t − u) =  φ(t)2 φ ′ (u)φ(−u) − φ(u)φ ′ (−u) ,

and 

φ ′′ (t + u)φ(t − u) − φ ′ (t + u)φ ′ (t − u) − φ ′ (t + u)φ ′ (t − u) +  φ(t + u)φ ′′ (t − u)

= φ(t)2 φ ′′ (u)φ(−u) − φ ′ (u)φ ′ (−u) − φ ′ (u)φ ′ (−u) +  φ(u)φ ′′ (−u) .

Evaluating at u = 0  

φ ′′ (t)φ(t) − φ ′ (t)22 = φ(t)22 φ ′′ (0)φ(0) − φ ′ (0)2

= φ(t)22 φ ′′ (0) − φ ′ (0)2 .

The resulting differential equation is 

φ ′′ (t)φ(t) − φ ′ (t)2 − (φ ′′ (0) − φ ′ (0)2)φ(t)2 = 0.

Consider the test function 

ic1t+c2t2f(t) =  e . 
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The first and second derivate for f are 

ic1t+c2t2f ′ (t) = (ic1 + 2c2t)e 
ic1t+c2t2 ic1t+c2t2f ′′ (t) = 2c2e + (ic1 + 2c2t)

2 e 

and evaluating at zero 

2 f ′ (0) = ic1 f ′′ (0) = 2c2 − c1.

Therefore 

′′ (t)f(t)− f ′ (t)2 −f f ′′ (0)− f ′ (0)2 f(t)2 

ic1t+c2t2 ic1t+c2t2 ic1t+c2t2= 2c2e + (ic1 + 2c2t)
2 e e 

2 2 2(ic1t+c2t2) − (ic1 + 2c2t)
2 e2(ic1t+c2t2) − (2c2 − c1 + c1)e 

2(ic1t+c2t2) = 2c2 + (ic1 + 2c2t)
2 − (ic1 + 2c2t)

2 − 2c2 e 

= 0. 

Hence f(t) satisfies the differential equation and 

ic1t+c2t2 
φ(t) = e . 

From properties of characteristic functions 

φ ′ (0) = iE[X] φ ′′ (0) = −E[X2] = −var(X)− E[X]2 .

Thus 
c1 = E[X] c2 = −var(X)/2.

Therefore, 
iE[X]t− var(X) t2φ(t) = e 2 

and by the inversion theorem X and Y are Gaussion. 

Exercise 9. [Optional, not for grade] (Problem 20 in p. 142, Section 4.14 
of [GS]): Suppose that X and Y are independent and identically distributed, 
and not necessarily continuous random variables. Show that X + Y cannot be 
uniformly distributed on [0, 1]. 
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Solution: Suppose X and Y are i.i.d. and Z = X + Y is uniform on [0, 1]. 
Then X,Y ∈ [0, 1/2] almost everywhere, or else Z ̸∈ [0, 1] with positive prob-
ability. Let z ∈ [0, 1/4]. Then, as X,Y ≥ 0 a.e., 

z = P(Z ≤ z) ≤ P(X ≤ z, Y ≤ z) =  P(X ≤ z)P(Y ≤ z) =  P(X ≤ z)2 ,

and similarly, as X,Y ≤ 1/2 a.e.,

z = P(Z > 1 − z) ≤ P(X > 1/2 − z, Y > 1/2 − z) ≤ P(X > 1/2 − z)2 .

Combining provides 
√ 

P(X ≤ z), P (X > 1/2 − z) ≥ z. (1) 

Moreover, noting both the upper and lower a.e. bounds of X and Y 

2z = P (1/2 − z < Z ≤ 1/2 +  z)

≥ P (X > 1/2 − z, Y ≤ z) +  P (Y > 1/2 − z,X ≤ z)

= 2P (X > 1/2 − z) P(X ≤ z)
√ √ 

≥ 2 z z

= 2z. 

Thus all inequalities are equalities, and in particular 

P (X > 1/2) P(X ≤ z) =  z,

and, in conjunction with (1), this implies that (1) holds with equality, namely 

1 √
P(X ≤ z) =  P X >  − z = z. (2) 

2 

Therefore, 

1 1 1 1 1 1 P X,Y ≤ , X + Y >  ≥ P < X ≤ , < Y  ≤ 
8 8 16 8 16 8

1 1 
= P < X ≤

16 8 

1 1 
= P − P

8 16 

1 1 
= −

8 16 

> 0.
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This provides 

1 
= P

8 

= P

< P

1 
Z ≤ 

8

1 1 
X ≤ , Y ≤ 

8 8

1 1 
X ≤ , Y  ≤

8 8 

1 1 − P X,Y ≤ , X  + Y >
8 8 

1 
= , 

8

a contradiction. 
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