MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Readings:

Notes from Lectures 11-13. [GS], Section 4.1-4.8 and 5.1-5.2 [Cinlar], Chapter IV.

Exercise 1. (Continuous-discrete Bayes rule) Let *K* be the number of heads obtained in six (conditionally) independent coins of a biased coin whose probability of heads is itself a random variable *Z*, uniformly distributed over [0*,* 1]. Find the conditional PDF of *Z* given *K*, and calculate $\mathbb{E}[Z \mid K = 2]$. You can use the following formula,

$$
\int_0^1 y^{\alpha} (1-y)^{\beta} dy = \frac{\alpha! \beta!}{(\alpha + \beta + 1)!},
$$

known to be valid for positive integer α and β .

Solution: We have $\mathbb{P}(K = 2 \mid Z = z) = cz^2(1-z)^4$, where *c* is a normalizing constant. Using Bayes' rule, we have

$$
f_Z(z|K=2) = \frac{P(K=2|Z=z)f_Z(z)}{P(K=2)} = \frac{z^2(1-z)^4}{\int_0^1 t^2(1-t)^4 dt} 1_{z \in [0,1]}
$$

Thus,

$$
\mathbb{E}[Z \mid K=2] = \frac{\int_0^1 z^3 (1-z)^4 \, dz}{\int_0^1 t^2 (1-t)^4 \, dt} = \frac{3}{8}.
$$

Exercise 2. Let *X* and *Y* be independent exponential random variables with parameter 1. Find the joint density function of $U = X + Y$ and $V = X/(X + Y)$, and deduce that *V* is uniformly distributed on [0*,* 1].

Solution: The transformation $x = uv$, $y = u - uv$ has Jacobian

$$
J = \begin{vmatrix} v & u \\ 1 - v & -u \end{vmatrix} = -u.
$$

Therefore, we have $|J| = |u|$, and thus $f_{U,V}(u, v) = ue^{-u}$ for $0 \le u < \infty$, and $0 \le v \le 1$. Integrating with respect to *u* we see that we have $f_V(v) = 1$, and also that *U, V* are independent.

Exercise 3. A point (X, Y) is picked at random uniformly in the unit circle. Find the joint density of *R* and *X*, where $R^2 = X^2 + Y^2$.

Solution: We can make a change of variables, and use the Jacobian. We can also just compute this directly, as above, by finding the distribution function and differentiating. Using the convention that $\sqrt{r^2 - u^2} = 0$ when the argument of the square root becomes negative, we have

$$
F(r,x) = \mathbb{P}(R \le r, X \le x) = \frac{2}{\pi} \int_{-r}^{x} \sqrt{r^2 - u^2} du,
$$

$$
f(r,x) = \frac{\partial^2 F}{\partial r \partial x} = \frac{2r}{\pi \sqrt{r^2 - x^2}}, \quad |x| < r < 1.
$$

Exercise 4. Let X_1 , X_2 , X_3 be independent random variables, uniformly distributed on $[0, 1]$.

- a. What is the probability that three rods of lengths X_1 , X_2 , X_3 can be used to make a triangle? (That is, that the largest one is smaller than the sum of the other two.)
- b. What is the probability distribution of the second largest X_k , i.e. $X^{(2)}$.

Solution:

a. Let $M = \max\{X_1, X_2, X_3\}$. The lengths X_1, X_2, X_3 form a triangle iff $M \leq X_1 + X_2 + X_3 - M$, i.e., the sum of any two sides is at least that of the third side. By symmetry, the probability that $M = X_i$ is the same for all

i, hence we have

$$
\mathbb{P}(X_1, X_2, X_3 \text{ forms a triangle}) = 3\mathbb{P}(X_1 \le X_2 + X_3, X_2 \le X_1, X_3 \le X_1)
$$

= $3 \int_0^1 \int_{\{x_2 + x_3 \ge x_1, x_2 \le x_1, x_3 \le x_1\}} dx_2 dx_3 dx_1$
= $3 \int_0^1 \frac{x_1^2}{2} dx_1$
= $\frac{1}{2}$.

b. The joint PDF for the order statistics is

$$
f(x^{(1)}, x^{(2)}, x^{(3)}) = n! f(x^{(1)}) f(x^{(2)}) f(x^{(3)}) \mathbb{1}_{x^{(1)} < x^{(2)} < x^{(3)}}.
$$

Integrating out $x^{(1)}$ and $x^{(3)}$

$$
f(x^{(2)}) = \int_{\mathbb{R}} \int_{\mathbb{R}} 3! f(x^{(1)}) f(x^{(2)}) f(x^{(3)}) \mathbb{1}_{x^{(1)} < x^{(2)} < x^{(3)}} dx^{(1)} dx^{(3)}
$$
\n
$$
= 3! f(x^{(2)}) \left(\int_{x^{(2)}}^{\infty} f(x^{(1)}) dx^{(1)} \right) \left(\int_{-\infty}^{x^{(2)}} f(x^{(3)}) dx^{(3)} \right)
$$
\n
$$
= 3! f(x^{(2)}) (1 - F(x^{(2)})) F(x^{(2)}).
$$

In particular, for *X^k* uniform

$$
f(x^{(2)}) = 3!x^{(2)}(1 - x^{(2)})1\hspace{-.5mm}1_{[0,1]}(x^{(2)}).
$$

Exercise 5. A stick is broken, at a location chosen uniformly at random. Find the average ratio of the lengths of the smaller and larger pieces.

Solution: WLOG assume the stick has unit length and by symmetry assume the small piece is distributed uniformly on $[0, \frac{1}{2}]$ with PDF

$$
f_S(s) = \begin{cases} 2 & 0 \le s \le 1/2 \\ 0 & \text{else} \end{cases}.
$$

Let $g : [0, 1/2] \rightarrow [0, 1], g(x) = x/(1 - x)$. This function has a well defined inverse $g^{-1}(x) = x/(1 + x)$ and derivative $(g^{-1})'(x) = (1 + x)^{-2}$. Let *X* = $g(S)$, the ratio of the small to large piece. Using the formula from lecture 12, the resulting PDF is

$$
f_X(x) = f_S(g^{-1}(x)) \frac{1}{|g'(g^{-1}(x))|}
$$

= $f_S\left(\frac{x}{1+x}\right) |(g^{-1})'(x)|$
= $2(1+x)^{-2}1[_{[0,1]}(x).$

Therefore, the resulting expected ratio is

$$
E[X] = \int_0^1 x 2 (1+x)^{-2} dx = \log(4) - 1.
$$

Exercise 6. Let $X \sim \Gamma(a, c)$, $U, V \sim \Gamma(a, \sqrt{2c})$ and $Y \sim \mathcal{N}(0, 1)$, all jointly independent. Compare the distribution of U, V and $\sqrt{X}V$. (Hint: compute independent. Compare the distribution of $U - V$ and \sqrt{XY} . (*Hint:* compute MGFs using conditional expectation).

Solution: Let $N \sim \mathcal{N}(\mu, \sigma^2)$ and $G \sim \Gamma(a, c)$ there respective moment generating functions are

$$
M_N(s) = \exp\left(\mu s + \frac{\sigma^2}{2} s^2\right)
$$

\n
$$
M_G(s) = \int_0^\infty e^{sx} \frac{c^a x^{a-1} e^{-cx}}{\Gamma(a)} dx
$$

\n
$$
= \frac{c^a}{\Gamma(a)} \int_0^\infty x^{a-1} e^{-(c-s)x} dx
$$

\n
$$
= 1 - \frac{s}{c} \int_0^\infty t^{a-1} e^{-t} dt \quad (c-s > 0)
$$

\n
$$
= 1 - \frac{s}{c} \qquad (c-s > 0).
$$

Conditional on *X* = *x*, $\sqrt{x}Y$ ∼ $\mathcal{N}(0, x)$. Therefore, the MGF for \sqrt{XY} is

$$
M_{\sqrt{X}Y}(s) = E \left[\exp \left(s\sqrt{X}Y \right) \right]
$$

= $E \left[E \left[\exp \left(s\sqrt{X}Y \right) \mid X = x \right] \right]$
= $E \left[\exp \left(\frac{X}{2} s^2 \right) \right]$
= $E \left[\exp \left(\frac{s^2}{2} X \right) \right]$
= $\left(1 - \frac{s^2}{2c} \right)^{-a} \left(c - s^2/2 > 0 \right).$

Similarly, the MGF for $U - V$ is

$$
M_{U-V}(s) = E \left[\exp(s(U-V))\right]
$$

\n
$$
= E \left[E \left[\exp(s(U-v)) \mid V=v\right]\right]
$$

\n
$$
= E \left[e^{-sv} E \left[\exp(sU) \mid V=v\right]\right]
$$

\n
$$
= E \left[e^{-sv} \left(1 - \frac{s}{\sqrt{2c}}\right)^{-a}\right] \left(\sqrt{2c} - s > 0\right)
$$

\n
$$
= \left(1 - \frac{s}{\sqrt{2c}}\right)^{-a} E \left[e^{-sv}\right] \left(c - s^2/2 > 0\right)
$$

\n
$$
= \left(1 - \frac{s}{\sqrt{2c}}\right)^{-a} \left(1 - \frac{-s}{\sqrt{2c}}\right)^{-a} \left(c - s^2/2 > 0\right)
$$

\n
$$
= \left(1 - \frac{s^2}{2c}\right)^{-a} \left(c - s^2/2 > 0\right).
$$

Hence \sqrt{XY} and $U - V$ have the same MGF and thusly, the same distribution.

Exercise 7. Let $X, Y \sim \Gamma(1, c)$ be independent and $Z = X + Y$. Describe conditional distribution $P_{Y|Z}$. (Ideally, you want to describe it as a Markov kernel $K(z, dy)$, however, full credit will be given for just specifying the conditional pdf or cdf).

Solution: The PDF for a Gamma random variable $U \sim \Gamma(a, c)$ is

$$
f_U(u) = \frac{1}{\Gamma(a)} c^a u^{a-1} e^{-cu}.
$$

Moreover, for two random variables with the same scale parameter the shape parameters are additive. In particular, $Z = X + Y \sim \Gamma(2, c)$. Thus,

$$
f_Z(z) = \frac{1}{\Gamma(2)} c^2 z^{2-1} e^{-cz} \mathbb{1}_{[0,\infty)}(z) = c^2 z e^{-cz} \mathbb{1}_{[0,\infty)}(z)
$$

$$
f_X(t) = f_Y(t) = \frac{1}{\Gamma(1)} ce^{-ct} = ce^{-ct} \mathbb{1}_{[0,\infty)}(t).
$$

The conditional distribution for $Y\vert Z$ is

$$
f_{Y|Z}(y \mid z) = \frac{f_{Z|Y}(z \mid y) f_{Y}(y)}{f_{Z}(z)}
$$

=
$$
\frac{f_{X}(z - y) f_{Y}(y)}{f_{Z}(z)}
$$

=
$$
\frac{ce^{-c(z-y)}ce^{-cy}}{c^2 z e^{-cz}} 1\!\mathbb{1}_{[0,\infty)}(z - y) 1\!\mathbb{1}_{[0,\infty)}(y) 1\!\mathbb{1}_{[0,\infty)}(z)
$$

=
$$
\frac{1}{z} 1\!\mathbb{1}_{[0,\infty)}(y) 1\!\mathbb{1}_{[y,\infty)}(z).
$$

Hence, the corresponding Markov Kernel is

$$
K(z, dy) = f_{Y|Z}(y \mid z) dy = \frac{1}{z} \mathbb{1}_{[0,\infty)}(y) \mathbb{1}_{[y,\infty)}(z) dy.
$$

MIT OpenCourseWare https://ocw.mit.edu

6.436J / 15.085J Fundamentals of Probability **Fall 2018**

For information about citing these materials or our Terms of Use, visit https://ocw.mit.edu/terms