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6.436J/15.085] Fall 2018
Problem Set 7

Readings:

Notes from Lectures 11-13.

[GS], Section 4.1-4.8 and 5.1-5.2
[Cinlar], Chapter IV.

Exercise 1. (Continuous-discrete Bayes rule) Let K be the number of heads
obtained in six (conditionally) independent coins of a biased coin whose prob-
ability of heads is itself a random variable Z, uniformly distributed over [0, 1].
Find the conditional PDF of Z given K, and calculate E[Z | K = 2]. You can
use the following formula,
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Solution: We have P(K =2 | Z = 2) = ¢2%(1 — 2)*, where c is a normalizing
constant. Using Bayes’ rule, we have
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Exercise 2. Let X and Y be independent exponential random variables with
parameter 1. Find the joint density functionof U = X+Y and V = X/(X+Y),
and deduce that V' is uniformly distributed on [0, 1].

Solution: The transformation x = wv, y = uw — uw has Jacobian
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Therefore, we have |J| = |ul, and thus fy7 v (u,v) = ue™ for 0 < u < oo, and
0 < v < 1. Integrating with respect to u we see that we have fiy/(v) = 1, and
also that U, V' are independent.

Exercise 3. A point (X,Y) is picked at random uniformly in the unit circle.
Find the joint density of R and X, where R? = X? 4 Y2,

Solution: We can make a change of variables, and use the Jacobian. We can
also just compute this directly, as above, by finding the distribution function and
differentiating. Using the convention that /72 — u? = 0 when the argument of
the square root becomes negative, we have
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Exercise 4. Let X;, X5, X3 be independent random variables, uniformly dis-
tributed on [0, 1].

a. What is the probability that three rods of lengths X, X2, X3 can be used to
make a triangle? (That is, that the largest one is smaller than the sum of the
other two.)

b. What is the probability distribution of the second largest Xy, i.e. X (2),
Solution:

a. Let M = max{X;, X9, X3}. The lengths X, X2, X3 form a triangle iff
M < X1+ X9+ X3 — M, i.e., the sum of any two sides is at least that of
the third side. By symmetry, the probability that M = X is the same for all



1, hence we have
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b. The joint PDF for the order statistics is
F@®, 2@ 2@y = nlf (@MW) f®) f(2P) L) o) -

Integrating out (1) and (%)
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Exercise 5. A stick is broken, at a location chosen uniformly at random. Find
the average ratio of the lengths of the smaller and larger pieces.

Solution: WLOG assume the stick has unit length and by symmetry assume
the small piece is distributed uniformly on [0, 1] with PDF

fs(s):{z 0<s<1/2

0 else

Let g : [0,1/2] — [0,1], g(z) = x/(1 — x). This function has a well defined
inverse g~ !(z) = /(1 + ) and derivative (¢ 1)/ (z) = (1 + 2)72. Let X =



g(S), the ratio of the small to large piece. Using the formula from lecture 12,
the resulting PDF is
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Therefore, the resulting expected ratio is

fx(z) = fs(g™ (2))

E[X] = /01 22 (14 2)~% do = log(4) — 1.

Exercise 6. Let X ~ I'(a,c), U,V ~ I'(a,v/2c) and Y ~ AN(0,1), all jointly
independent. Compare the distribution of U — V and v XY. (Hint: compute
MGFs using conditional expectation).

Solution: Let N ~ N (u,0%) and G ~ T'(a,c) there respective moment
generating functions are
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Conditional on X = z, \/zY ~ N (0, z). Therefore, the MGF for v/ XV is
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Similarly, the MGF for U — V is
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Hence \/X Y and U — V have the same MGF and thusly, the same distribution.

Exercise 7. Let X, Y ~ I'(1, ¢) be independent and Z = X + Y. Describe con-
ditional distribution Py|z. (Ideally, you want to describe it as a Markov kernel
K(z,dy), however, full credit will be given for just specifying the conditional
pdf or cdf).

Solution: The PDF for a Gamma random variable U ~ I'(a, ¢) is
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Moreover, for two random variables with the same scale parameter the shape
parameters are additive. In particular, Z = X +Y ~ I'(2, ¢). Thus,
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The conditional distribution for Y| Z is

friz(y | 2) = fZ'Y(;;("‘JZ))fY(y)
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Hence, the corresponding Markov Kernel is

1
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