
 
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

6.436J/15.085J Fall 2018 
Problem Set 6 

Readings: 
(a) Notes from Lecture 10 and 11. 
(b) [Grimmett-Stirzaker]: Section 4.1-4.10. Optionally, Section 4.11. 

Exercise 1. The probabilistic method. Twelve per cent of the circumference 
of a circle is colored blue, the rest is red. Show that, irrespective of the manner 
in which the colors are distributed, it is possible to inscribe a regular octagon in 
the circle with all its vertices red. 

Hint: The probabilistic method is a general method for proving existence: if 
you can prove that a randomly selected structure has certain desired properties 
with some positive probability (no matter how small), then a structure with these 
properties is guaranteed to exist. 

Solution: We pick an inscribed regular octagon at random by choosing uni-
formly over the circle the position of a vertex. Let event Vi be the event that ver-
tex i is red, i = 1, . . . , 8. We are interested in showing that P(V1 \· · ·\V8) > 0. 
Note that for any i, P(Vi) = 0.88. Unfortunately, our events are not indepen-
dent, so we cannot multiply probabilities. Instead, we have: 

P(V1 \ · · · \ V8) = 1 − P((V1 \ · · · \ V8)
c) 

= 1 − P(V c [ · · · [ V8 
c) 1 

8 
X 

� 1 − P(Vi
c) 

i=1 

= 1 − 8 × 0.12 = 0.04 > 0. 
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Exercise 2. Suppose X is a continuous random variable with a power law dis-
c tribution. Namely there exists c > 0 and > 0 such that P(X > x) = , for 
x 

every x � c. Consider the r-th moment of X, namely E[Xr], where r > 0 is 
any real value. Find necessary and sufficient conditions for r in terms of c and 

for the r-th moment to be finite. 

Solution: The pdf for X is 

d −(1+ ) fX (x) = FX (x) = c x . 
dx 

Thus, we have 
1 
Z 

r 
E[Xr] = x c x −(1+ )dx, 

c 

which is finite iff r < . 

Exercise 3. We have a stick of unit length [0, 1], and break it at X, where X is 
uniformly distributed on [0, 1]. Given the value x of X, we let Y be uniformly 
distributed on [0, x], and let Z be uniformly distributed on [0, 1−x]. We assume 
that conditioned on X = x, the random variables Y and Z are independent. 
Find the joint PDF of Y and Z. Find E[X|Y ], E[X|Z], and ̂ (Y, Z). 

Solution: The conditional PDFs for X|Y and X|Z are 

fY |X (y|x)fX (x) (1/x)1{y�x}1x2[0,1] 
fX|Y (x|y) = = , 

fY (y) log 1/y 

and 

fZ|X(z|x)fX (x) (1/(1 − x))1z�1−x1x2[0,1] 
fX|Z(x|z) = = . 

fZ(z) log 1/z 

Therefore, the joint PDF of X, Y, Z is 

fY,Z,X(y, z, x) = fY,Z|X(y, z|x)fX (x) = fY |X (y|x)fZ|X(z|x)fX (x) 

1 1 
= 1{y�x}1{z�1−x}, x 1 − x 

and integrating the joint pdf of Y and Z is 

Z 1 
fY,Z(y, z) = fY,Z,X(y, z, x)dx 

0 
Z 1−z 1 

= dx 
x(1 − x) y 

= log(1 − z) − log y + log(1 − y) − log z 
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when y � 1 − z, and 0 otherwise. 
Moreover, the conditional expectations for X|Y and X|Z are 

Z Z 1 1 1{y�x} 1 − y y − 1 
E[X|Y ] = xfX|Y (x|y)dx = dx = = , 

log 1/y log 1/y log y 0 0 

and 
Z 1 

E[X|Z] = xfX|Z(x|z)dx 
0 

Z 1 x 1z�1−x 
= dx 

1 − x log 1/z 0 
Z 1−z 1 x 

= dx 
log 1/z 1 − x 0 

−1 + z − log z 
= 

log 1/z 

1 − z + log z 
= . 

log z 

Finally, observe that X and 1 − X are identically distributed, and therefore 
Y and Z are identically distributed. See lecture notes for Lecture 9 for the 
computation E[Y ] = 1/4, E[Y Z] = 1/24. It follows that E[Z] = 1/4, and 
thus, 

1 1 1 1 
cov(Y, Z) = − = − . 

24 4 4 48 

Now we compute the variances. We have that 

E[Y 2] = E[E[Y 2|X]] = E[(1/3)X2] = 
1 
, 

9 

where we used the fact that the uniform random variable on [0, x] has square-
expectation of x2/3. Next, 

1 1 7 
var(Y ) = E[Y 2] − E[Y ]2 = − = 

9 16 144 

Thus the correlation coefficient is 

cov(Y, Z) −1/48 3 
ˆ(Y, Z) = p = p = − . 

var(Y )var(Z) (7/144)(7/144) 7 
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Exercise 4. Assume that X1, . . . ,Xn are independent continuous random vari-
ables with common density function function f . Let X(1), . . . ,X(n) be the or-
dered statistics of X1, . . . ,Xn. Namely, X(1) is the smallest of X1, . . . ,Xn, 
X(2) is the second smallest, etc., and X(n) is the largest of them all. Establish 
that the joint distribution of X(1), . . . ,X(n) is given by the joint density 

fX(1),...,X(n) (x1, . . . , xn) = n!f(x1) · · · f(xn), x1 < x2 < · · · < xn, 

) = 0, otherwise. Use this to derive the densities and fX(1),...,X(n) (x1, . . . , xn 
for maxj Xj and minj Xj . 

Solution: Define 

g(x1, . . . , xn) := n!f(x1)f(x2) · · · f(xn)1x1<x2<···<xn 
. 

For x1 < x2 < · · · < xn 

P(X(1) � x1,X
(2) � x2, . . . ,X

(n) � xn) 

= n!P (X1 � x1,X1 < X2 � x2, . . . ,Xn−1 < Xn � xn), 
Z 

= n!f(z1)f(z2) · · · f(zn) 
z1�x1,z1<z2�x2,··· ,zn−1<zn�xn 

Z 
= g(z1, . . . , zn), 

z1�x1,z2�x2,...,zn�xn 

where the first line follows by explicitly enumerating the n! ways in which the 
event {X(1) � x1,X

(2) � x2, . . . ,X
(n) � xn} could occur; the second line 

follows since f is a density for each Xi, and the Xi are independent; and the 
third line follows by definition of g. This last equality implies that g is the joint 
density of the random variables X(1),X(2), . . . ,X(n). 

By definition, maxj Xj = X(n) and the distribution for X(n) is obtained 
by integrating out the other variables. More specifically, the joint density of 
X(2), . . . ,X(n) is 

Z +1 

g(y2, . . . , yn) = g(y1, y2, . . . , yn)dy1 
−1 

Z y2 

= n!f(y1)f(y2) · · · f(yn)1y1<y2<···yn 
dy1 

−1 

= n!F (y2)f(y2) · · · f(yn)1y2<y3<···<yn 
. 

Similarly, the joint density of X(3), . . . ,X(n) is 
Z +1 

g(y3, . . . , yn) = n!F (y2)f(y2) · · · f(yn)1y2<y3<···yn 
dy2 

−1 

= n!
1 
F (y3)

2f(y3)f(y4) · · · f(yn)1y3 <y4<···yn 
. 

2 
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After, n − 1 such integrations 

g(yn) = 
n! 

F (yn)
nf(yn) = nF (yn)

n−1f(yn). 
(n − 1)! 

Again, by definition minj Xj = X(1) and we proceed in a similar manor. 
The joint density of X(1), . . . ,X(n−1) is 

Z +1 

g(y1, . . . , yn−1) = n!f(y1)f(y2) · · · f(yn)1y1<y2<···yn 
dyn 

yn−1 

= n!f(y1)f(y2) · · · f(yn−1)[1 − F (yn−1)]1y1<y2<···yn−1 , 

and of for X(1), . . . ,X(n−2) 

Z +1 

g(y1, . . . , yn−2) = n!f(y1)f(y2) · · · f(yn−1)[1 − F (yn−1)]1y1 <y2<···yn−1 dyn−1 
yn−3 

= n!f(y1)f(y2) · · · f(yn−2)[1 − F (yn−2)]
2 11y1<y2<···yn−2 . 2 

After n − 1 such integrations, the resulting density is 

g(y1) = n[1 − F (y1)]
n−1f(y1). 

Exercise 5. Let X1, . . . ,Xn be independent r.v. with Exp(�) distribution. Con-
P 

sider Sn = Xj . The distribution of Sn is sometimes called Erlang. 1�j�n 

�nx (a) Establish that the density of Sn is fSn 
(x) = 

n−1 
exp(−�x). (n−1)! 

(A Gamma distribution with an integer shape parameter n.) 

(b) Consider the joint distribution of S1, S2, . . . , Sn−1 given Sn = x. Es-
tablish that this joint distribution is the same as the joint distribution of
U (1), . . . , U (n−1), where U (1), . . . , U (n−1) is the order statistics of n − 1 
independent r.v. with U(0, x) distribution.

Solution: 

(a) We proceed by induction. The case of n = 1 holds as this is just the expo-
nential density. Assuming for n exponentials, the density of n +1 exponen-
tials is given by convolution

Z z 
(z) = (t)fX (z − t)dt fSn+1 fSn n+1 

0 
Z z tn−1 �n 

= � exp(−�(z − t))dt 
(n − 1)! 0 

�n+1tn 
= 

n! 
as desired. 
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(b) Let A be the event that S1 � S2 � · · · � Sn. Then

fS1,...,Sn 
(s1, . . . , sn) 

fS1,...,Sn−1|Sn 
(s1, . . . , sn−1|sn) = 

fSn 
(sn) 

fX1,...,Xn 
(s1, s2 − s1 . . . , sn − sn−1) 

= 
fSn 

(sn) 

fX1 (s1) · fX2 (s2 − s1) · · · · · fXn 
(sn − sn−1) 

= 

1 

fSn 
(sn) 

�e−�s1 −sn−1) · �e−�(s2 −s1) · · · · · �e−�(sn 

1 

n−1 = 
�nsn e−�sn /(n − 1)! 

A 

�n −�sn e 
= A1 

−�sn �ns nn 
−1 e /(n − 1)! 

(n − 1)! 
= A. n−1 sn 

Observing that U(0, sn) have density fU (u) = 1/sn u2(0,sn), we compute 
that 

(n − 1)! 
fU (1),...,U (n−1) (u1, . . . , un−1) = (n − 1)!fU

n−1(u) A = 
n−1 A, 1 1 

sn 

giving the result. 

Exercise 6. A needle of length 2s < 1 unit is randomly tossed onto a quad-ruled 
sheet with horizontal and vertical lines spaced at 1 unit. Assuming the position 
and the angle of the needle are independent and uniform, find the average num-
ber of lines the needle intersects. 

Solution: Consider the unit square [0, 1] × [0, 1] in the x, y plane. The center 
of the needle will be uniformly distributed within this square. Let X and Y be 
uniform random variables for the x and y coordinates, respectively. Moreover, 
let � be the angle the needles makes with the x-axis, where � is uniformly dis-
tributed between [0, 2ˇ]. By symmetry it suffices to consider the angle uniformly 
distributed between [0, ˇ/2]. Furthermore, as the 2s < 1, the needle may not 
cross both horizontal and vertical lines simultaneously. Crossing one of these 
lines requires that the center is beyond either the horizontal or vertical midpoint. 
Therefore, by symmetry, it suffices to consider the needle distributed in one of 
the quadrants, e.g. the [0, 1/2] × [0, 1/2]. By independence the resulting joint 
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PDF is 
( 

2 2 · 2 · 0 � x, y � 12 , 0 � � � ˇ 
fX,Y,�(x, y, �) = ˇ 2 

0 else 

1 

( 

1 

8 0 � x, y � 12 , 0 � � � ˇ 

1 

= ˇ 

1 

2 . 
0 else 

The needle will cross the x-axis if s sin � � X and similarly the needle will 
cross the y-axis if s cos � � Y . Therefore, the expected number of lines crossed 
is 

E [ {X � s sin �} + {Y � s cos �}] 
Z ˇ 

2 
Z 1

2 
Z 1

2 8 
= [ {x � s sin �} + {x � s cos �}] dx dy d� 

ˇ 0 0 0 
" # 

8 1 
Z ˇ 

2 
Z s sin � 1 

dx d� + 

Z ˇ 

2 
Z s cos � 

= dy d� 
ˇ 2 2 0 0 0 0 
" # 

4 
Z ˇ 

2 
Z ˇ 

2 

= s sin � d� + s cos � d� 
ˇ 0 0 

8s 
= . 

ˇ 

Hence the expected number of lines cross is 8s . 
ˇ 
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