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Problem Set 5 

Readings: 
(a) Notes from Lectures 7-9. 
(b) [Cinlar] Sections I.4-I.6 

Exercise 1. The worker’s union requests that all workers at a factory be given 
the day off if at least one worker has a birthday on that day. Otherwise workers 
agree to work 365 days a year. Management is to maximize the number of man-
days worked per year. How many workers should they hire? 

Solution: Management will maximize the expected number of man-days 
worked per year assuming that worker’s birthdays are independent and iden-
tically distributed uniformly over the calender year. More specifically, given n 
workers, let {Bk | k = 1, . . . , n} be the birthday of the k-th worker and D = 
365 be the number of calendar days, then, for all k and for all d ∈ 1, {. . . , D}, 

1 P(Bk = d) = D . Let Wd(n) be an indicator random variable for whether or PD not the factory is open on day d and W (n) = Wd be the number of days d=1 
worked. Then 

{Wd(n) = 1} = {No worker has a birthday on day d} � �n 1 
=⇒ P(Wd(n) = 1) = 1 − , 

D 

and the expected number of work days is " # 
D D D � � � � n n X X X 1 1 

E [W (n)] = Wd(n) = E [Wd(n)] = 1 − = D 1 − . 
D D 

d=1 d=1 d=1 

Hence the expected number of man-days worked is� �n 1 
nD 1 − . 

D 

Consider the ratio � �n � � 
nD 1 − 1 n 1 D r(n) = � � = 1 − . n−1 

(n − 1)D 1 − 1 n − 1 D 
D 

Then r(n) ≥ 1 for n ≤ D and r(n) < 1 for n > D, and the optimal number of 
workers is n = D = 365. 
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Exercise 2. Let Ω = Z+, F = 2Ω . Complete construction of a probability 
space (Ω, F , P) and come up with a sequence of random variables Xn which is 
increasing a.e., but E[Xn] does not converge to E[X], where X = limn Xn a.e. 

6 1 Solution: Consider the probability space (N, 2N , P) with P(k) = 
π2 k2 . Let 

Xn(k) = −1{k ≥ n}k. Then Xn ≤ Xn+1 and for all n 

∞ ∞ X X 6 1 6 1 
E [Xn] = −k = − = −∞. 

π2 k2 π2 k 
k=n k=n 

However, limn→∞ Xn = 0. Hence h i 
lim E [Xn] = −∞ =6 0 = E lim Xn . 
n→∞ n→∞ 

Exercise 3. Let (Ω, F , P) be a probabilisty space and X ≥ 0 a random variable. 
Show Z ∞ 

E[X] = (1 − FX (x))dx , 
0 

where FX (x) = P[X ≤ x] is a CDF of X . (Hint: Fubini.) 

Solution: We solve the problem for a more general case: Let (Ω, F , µ) be a 
measure space with µ σ-finite and f ≥ 0 measurable, then Z Z ∞ 

f(ω)dµ(ω) = µ[{ω : f(ω) > x}]dx, 
0 

Let ([0, ∞], B, λ) be the Lebesgue measure space and ([0, ∞]×Ω, F×B, µ× 
λ) the product measure space with (Ω, F , µ). Although not explicitly discussed 
in lecture, the construction of ([0, ∞], B) is very similar to that of ([0, ∞), B). 
Moreover, for a general topological space X , B(X) is defined as the smallest σ-
algebra containing all the open sets. One way to explicitly generate the topology 
on [0, ∞] is through the function tanh : [0, ∞] → [0, 1] with the continuous 
extensions tanh(∞) = 1. The open sets in [0, ∞] are then the image of open 
sets in [0, 1] under tanh−1 . As discussed in Lecture 9, the Lebesgue measure 
is σ-finite, and therefore the proofs for the probability measure and Fubini’s 
theorem hold. 

Consider the function g : ([0, ∞] × [0, ∞], B × B) → (R, B) ( 
1 x < y 

g(x, y) = 1(x,∞](y) = . 
0 else 
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⎪⎪⎪
⎪⎪⎪

Let B ∈ B, ⎧ 
[0, ∞] × [0, ∞] {0, 1} ∈ B ⎪⎨{x ≥ y} {0} ∈ B and {1} 6∈ B 

g −1(B) = . 
{x < y} {1} ∈ B and {0} 6∈ B ⎪⎩Ø else 

As {x < y} is open and B × B contains all open sets, g−1(B) ∈ B × B in all 
cases. Hence g is (B × B, B) measurable. 

Claim: Let h1 be (F1, G1) measurable and h2 be (F2, G2) measurable. The 
function h(ω1, ω2) = (h1(ω1), h(ω2)) is (F1 ×F2, G1 × G2) measurable. 

Let 
L = {E ∈ G1 × G2 | h−1(E) ∈ F1 ×F2}. 

Let Bk ∈ Gk, h−1(B1 × B2) = (h−1(B1) × h−1(B2)) ∈ F1 ×F2 by measura-1 2 
bility of h1 and h2. 

f−1(Ø) = {(ω1, ω2) | (h1(ω1), h2(ω2)) ∈ Ø} 
= {(ω1, ω2) | h1(ω1) ∈ Ø or h2(ω2) ∈ Ø} 
= Ø × Ø = Ø. 

Thus, φ ∈ L. Let {Ek} ∈ L. By properties of the inverse image h−1 ( 
S∞ Ek) = S∞ � � k=1 

c 
h−1(Ek) ∈ F1 × F2 and h−1(Ec) = h−1(Ek) ∈ F1 × F2. Hence L k=1 k 

is a σ-algebra containing a generating p-system for G1 ×G2, and by minimality, 
L = G1 × G2. 

In particular, the function h : (R × Ω) → (R × R) h(x, ω) = (x, f(ω)) is 
(B × F , B × B) measurable. Therefore, the function (R × Ω) 7→ (R × R) 

1(x,∞](f(ω)) = (g ◦ h) 

is (B × F , B × B) measurable. The iterated integrals are Z Z Z 
1(x,∞](f(ω)) dx dµ = f(ω) dµ, 

Ω [0,∞] Ω 

and Z Z Z Z 
1(x,∞](f(ω)) dµ dx = 1f−1(x,∞](ω) dµ dx 

[0,∞] Ω [0,∞] Ω Z 
= µ(f−1(x, ∞]) dx. 

[0,∞] 
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Moreover, as the function is nonnegative Fubini’s theorem applies and these are 
equal Z Z 

f(ω) dµ = µ(f−1(x, ∞]) dx. 
Ω [0,∞] 

Exercise 4. Show that for integrable f Z Z 
fdµ ≤ |f |dµ. 

Solution: By definition 

1 Exercise 5 (Weird integrable functions). Let ψ(x) = √ 1(0,1)(x) and 
x 

∞X 
F (x) = 2−nψ(x − rn) , 

n=1 

where {rn} is some enumeration of all rationals in (0, 1). Show that F (x) is a 
measurable non-negative function with Z 

Fdλ < ∞ . 
[0,1] 

In particular, F (x) is finite almost everywhere on [0, 1], yet unbounded on every 
interval. 

1 Solution: The function √ is continuous on (0, 1) and simple functions are 
x 

measurable. Therefore, as continuous functions are measurable and the product 
of measurable functions is measurable, for all r ∈ Q, ψ(x − r) is measurable. 
The sum of measurable functions is measurable and thus 

kX
fk := 2−nψ(x − rn) 

n=1 

4 

∣∣∣∣ ∣∣∣∣
∣∣∣∣ f dµ∣∣ = ∣∣∫ ∣∣ ∣∣∫

f+ dµ−
∫
f− dµ ∣∣

∣∣∣∣
≤
∣∣∣∣∫ ∣∣

f+ dµ∣∣+

∣∣∣∣∫ f− dµ∣∣ (Triangle Inequality)

=

∫
f+ dµ+

∫
f− dµ (f+, f− ≥ 0)

=

∫
|f | dµ.



is measurable. As ψ ≥ 0, the {fk} are increasing and nonnegative. In particular, 
for all x, the sequence {fk(x)} is increasing and therefore 

lim fk(x) 
n→∞ 

exists. By definition, for all x, 

F (x) = lim fk(x). 
n→∞ 

Hence fk → F pointwise and thus F is measurable and nonnegative. By the 
monotone convergence theorem Z Z kX

F dλ = lim 2−nψ(x − rn) dλ(x) 
k→∞ [0,1] [0,1] n=1
∞ ZX 

2−n = ψ(x − rn) dλ(x) 
[0,1] n=1 

∞ Z X
(a) 2−n = ψ(x) dλ(x) 

[−r,1−r] n=1 
∞ ZX 1 

2−n = √ dλ(x)
(0,1−r) x 

n=1 
∞ Z X 1 

2−n ≤ √ dλ(x),
(0,1) x 

n=1 

where (a) follows from a change of variables and (??). For all m, n ∈ N � 
2 2 � 

m m 
Bm,n = , . 

2 (n + 1)2 n 

For a fixed m the Bm,n are disjoint and 

∞[ 
Bm,n = [0, 1), (1) 

n=m 

and as x− 2
1 

is decreasing 

1 n + 1 √ ≤ . (2) 
m x |Bn,m
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Consider the sequence of functions 

kX n + 1
gm,k = 1Bm,n . m 

n=m 

For all m, k gm,k is a simple functiona and thus measurable. Moreover, by (1) 
and disjoints of the Bm,n these functions increase pointwise in k to a measurable 
function gm := limk→∞ gm,k on [0, 1). Therefore, by the montone convergence 
theorem Z ∞ ZX n + 1 

gm dx = dx 1Bm,n
[0,1) [0,1) m 

n=m 
∞ Z � � X 2 2 n + 1 m m 

= − 
2 

[0,1) m n (n + 1)2 
n=m 
∞ ZX 2n + 1 

= m 
[0,1) n2(n + 1) 

n=m 
∞X 1≤ 2m 

2n 
n=m 

∞X2 1 
= + 2m

2 m n 
n=m+1 Z ∞2 1 ≤ + 2m dx 

2 m x m 
2 

= + 2.
m 

1 By (2) √ ≤ gm(x) for all x ∈ [0, 1). This provides 
x Z Z Z 

1 1 2 √ dλ(x) ≤ √ dλ(x) ≤ gm dλ(x) ≤ + 2.
(0,1) x [0,1) x [0,1) m 

As this holds for all m, it holds in the limit. Therefore, Z 
1 √ dλ(x) ≤ 2.

(0,1) x 

Hence Z ∞X 
F dλ ≤ 2 · 2−n < ∞ 

[0,1] n=1 
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1 and F is finite almost everywhere. Moreover, as √ is unbounded on (0, 1), F 
x 

is unbounded on every interval, i.e. there is a rational rn in every interval and 
the function ψ(x − rn) will be unbounded. 

Exercise 6. For all n, let gn and g be measurable functions. Suppose that gn ↑ g R − R R 
and that g dµ < ∞. Prove that gn dµ ↑ g dµ. 1 

Solution: Let us decompose g and each of the gn into a pair of nonnegative 
− + + − functions g− and g+, and g and g , such that g = g+ − g− and gn = g − g . n n n n 

− Since gn ↑ g, then we have that gn + g are nonnegative functions such that 1 R − − − gn + g ↑ g + g1 . Then, using the fact that g dµ < ∞ and the MCT, we 1 1 
have Z Z 

gndµ = gn + g − − g −dµ 1 1 Z Z 
= gn + g −dµ − g −dµ 1 1 Z Z 
↑ g + g −dµ − g −dµ 1 1 Z 
= g + g − − g −dµ 1 1 Z 
= gdµ. 
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Exercise 7. (Differentiating under the integral sign) 
Let g : R2 7→ R be a continuous function of two variables s and x. Furthermore, 
assume that the derivative g0(s, x) = (∂g/∂s) exists for every s and x, is jointly 
measurable in (s, x) and is a continuous function of s for any fixed x. Assume 
|g0(s, x)| ≤ c for all s, x. 

Let X be a random variable. Show that � � 
∂ ∂g 
E[g(s, X)] = E (s, X) . 

∂s ∂s 

Note: You can use the fact from elementary calculus that under our assumptions,R 
g(s, x) = g(0, x) + s ∂g (u, x)du for all x. 0 ∂s 

Solution: Taking expectation on both sides of the given identity, Z s ∂g 
E[g(s, X)] = E[g(0, X)] + E (u, x)du 

∂s 0 

Since the Lebesgue measure on R is σ-finite and |∂g (u, x)| ≤ c, and c is ∂s 
integrable over [0, s], Fubini theorem yields Z Z s s ∂g ∂g 

E (u, x)du = E (u, x)du. 
∂s ∂s 0 0 R s E∂g As a result, E[g(s, X)] = E[g(0, X)] + (u, x)du is differentiable 0 ∂s 

with derivative at s equal to E∂g (s, x). ∂s 
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