MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.436J/15.085] Fall 2018
Problem Set 4

Readings:

(a) Notes from Lecture 6 and 7.

(b) [Cinlar] Sections 1.4, 1.5 and 11.2
(c) [GS] Chapter 3

Exercise 1. Let IV be a random variable that takes nonnegative integer values.
Let X1, X, ..., be a sequence of i.i.d. discrete random variables that have finite
expectation and are independent from N. Use iterated expectations to show that
the expected value of >-N | X; is E[N]E[X].

Solution:

N
E[Z Xi] = E[E[Z Xi|N]]
; i=1

— EINE[X)
E[N|E[X1]



Exercise 2. Let X and Y be binomial with parameters (m,p) and (n, q), re-
spectively.

(a) Show that if X is independent from Y, m = n, and p = g then X + Y is
binomial. Hint: Use the interpretation of the binomial, not algebra.

(b) Does the conclusion of part (a) remain valid if m # n? If X and Y are
not independent? If p # ¢?

(c) Show thatif X and Y are independent, then

P(X+Y =k)= Y px(i)py(k—1i).

1=—00

(d) Use the result from part (c) to find the PMF of X + Y where X and
Y are independent Poisson random variables with parameters A and u,
respectively. Hint: The “binomial theorem” states that

n

(@a+d)"=>_ (?) alb"

i=0
Solution:

(a) X and Y can be constructed as sums of i.i.d. Bernoulli random variables.
Thus, as long as p = ¢, then X + Y can also be constructed as a sum
of i.i.d. Bernoulli random variables, which means that it has a Binomial
distribution.

(b) The conclusion of part (a) remains valid if m # n using the same argu-
ment. If X and Y are not independent, it doesn’t hold. For example, for
X =Y withp € (0,1) and n > 1, we have that X + Y only takes values
in the even numbers, and not on odds. Thus, it cannot be binomial. If
p # ¢, the conclusion also does not hold. For example, ifp = 1, g = 1/2,
andn =m = 2, wehavethat P(X +Y =1) = P(X +Y = 2) >
P(X + Y = 3), which cannot happen with a Binomial random variable.

(c) If X and Y are independent, then

P(X+Y =k) = Y pxy(ilk—i)py(k—1)

= Z px (1)py (kb — ).
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(d) If X and Y are independent Poisson random variables with parameters A
and p, respectively, we have

PX+Y =k = > px(i)py(k—1)

1=—00

_ o~ At )"

K

which is a Poisson random variable with parameter A + L.



Exercise 3. A 4-sided die has its four faces labeled as a, b, ¢, d. Each time the die
is rolled, the result is a, b, ¢, or d, with probabilities pg, ps, Pc, P4, T€Spectively.
Different rolls are statistically independent. The die is rolled n times. Let N,
and N, be the number of rolls that resulted in a or b, respectively. Find the
covariance of N, and Np.

Solution: Let {X} | k =1,...,n} be the i.i.d rolls of the dice. Using indicator
functions, the number of rolls resulting in a particular outcome is

N, = Zn: 1{X, = e},
k=1

with mean .
E[N] =Y E[1{X, = e}] = np..
k=1
The covariance between N, and NV, is

3

cov(Ny, Ny) = E ( > ({X;=a} - pa)) (1{X; = b} — )

i=1 Jj=1
= E[(1{X) = a} — pa) (1{Xs = b} — ps})]
k=1
+> > E[(1{X; = a} —pa) (1{X; = b} —pp)] .
i=1 j#i

This later term is zero since X; and X; are independent for 7 # j. For this first
term

E[(1{X} = a} — pa)(I{ Xk = b} — pp})]
= FE[1{X} = a}1{Xy = b}] — pp &/ [I{ X} = a}| — po & [L{ X}, = b}] + paps
=0 — 2papp + PaPb = —DaPb-

Hence
cov(Ng, Np) = —npgapp.

Exercise 4. Suppose that X and Y are discrete random variables on (2, F, P).
An elegant way of defining the conditional expectation of Y given X is as a
random variable of the form ¢(X) (where ¢ is a measurable function), such that

E[p(X)g(X)] = E[Y g(X)],
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for all measurable functions g. In this problem, we will prove that this condition
defines the conditional expectation uniquely; that is, if we also have

El)(X)g(X)] = E[Y g(X)],
for every measurable function g, then ¢(X) and ¢(X) are almost surely equal,
ie, P((X) = (X)) = 1.

(a) Prove that the following sets are F-measurable: {¢(X) > ¢ (X)} and,
for any integer n, A, := {¢(X) > (X)) + 1/n}.

(b) Assume the contradiction P(¢(X) = (X)) < 1and use g(z) = 14, for
some appropriate n to show that the conditional expectation is unique.

Solution:

(a) First, since X is discrete, ¢(X) and (X ) are random variables, with-
out any further assumptions on ¢, . This implies that {w|¢(X (w)) >
(X (w))} and {w|p(X(w)) > (X (w))} are F-measurable sets; in-
deed, since one can always fit a rational number between any two distinct
real numbers, we have

{o0(X) > (X)) = [ J{8(X) > ¢} [ [{g > ¥(X)}
q€Q

The set {¢(X) > (X)) + a} is also F-measurable for any real a (and of
course, for 1/n) since, similarly,

{6(X) > p(X) +a} = [ J{o(X) > ¢} [ {a—a > (X))}
q€Q

(b) We now proceed to the proof of uniqueness. Assume by contradiction
that P(¢(X) = (X)) < 1. Without loss of generality, we can assume
P(¢p(X) < (X)) > 0. The sets

Ap = {w[op(X)(w) +1/n < y(X)(w)}

form an increasing sequence of F-measurable sets and

[l @) < (X))} = | An.

n>1

By continuity of probability, there exists some n such that P(A,,) > 0.



Now, define g(x) = 14, . Its expectation is well-defined and by construc-

tion,
Elp(X)g(X)] = E[¢(X)la,]
< E[($(X) —1/n)la,]
= E[(X)g(X)] = (1/n)P(An)
< E[Y(X)g(X)]

which is a contradiction.

Exercise 5. A machine is refilled each morning with n portions of vanilla and
chocolate ice creams each (a total of 2n portions). Customers arrive sequentially,
each getting one of the ice creams independently with probability 1/2. Consider
the first moment when a customer receives an “out of order” message. Let X be
the number of portions of the other type left at this moment, 0 < X < n. Find
the distribution of X.

Solution: If the unlucky customer ordered vanilla, then there are X = m por-
tions of the chocolate left, if there were 2n — m portions were given earlier,
out of which n were vanilla. There are (2”;7") sequences of orders that lead to
that scenario, all happening with probability 2~(2"~)_ Thus, since vanilla and
chocolate are interchangeable, we have

P[X =m] = <2n N m) 9~ (2n=—m)
n

Exercise 6. Let ({2, F, ) be a measure space. (So, p is a measure, but not
necessarily a probability measure.) Let g : {2 — R be a nonnegative measurable
function. Let { B; } be a sequence of disjoint measurable sets. Prove that

[e.e]
gdp = / gdp.
(Be rigorous!)

Note: As an application, this exercise gives another rich source of probability measures.
Namely, take f —a nonnegative measurable function on the real line with fR flz)dr =1
(integral w.r.t. Lebesgue measure), and define a set-function P(A) = [, fdx. The
exercise shows that P(+) is a probability measure on (R, B). Function f is called the
probability density function (PDF) of P.



Solution: Let B = |J;°; B; and

k

g =9l g, =Y 9la,
i—1

where the last equality holds since the B; are disjoint. Moreover, for any arbi-
trary countable collection of disjoint sets {U,, }

1y, U = Z 1y, .

neN

Since g is nonnegative gy, is increasing to g1 p, and therefore,

/gduz/gﬂBdu
B

= /lim gedp (g / glp)
k—o0

= lim / gr dp ( Monotone convergence theorem)
k—o0

k
= 1i 1p.d
jim, 32t
k
= lim Z / glp, dp  (Linearity of integration)

k—o0 4
=1

:;/Bigd,u.

Exercise 7. [Optional, not to be graded] Let 1. and v be two finite measures on

(R, B). Show that if
[ rau=[ rav
R R

for all bounded continuous functions f then p = v. (Hint: write 1, p) (z) as an
increasing limit of continuous functions.)

Note: This exercise shows that measure on Borel o-algebra is uniquely characterized
by its values on continuous functions. This is true on R, R™ and any other topological
space. Similar to how it is sufficient to know measures only on intervals (—oo, a) it is
sufficient to consider only a handful of functions (such as all sines and cosines, or all
exponents). This will be discussed later.



Solution: Let a < b € R. Consider the sequence of functions, defined for all
n > ﬁ and 0 otherwise,

(0 r<a

n(zx—a) a<z<a+i
falz) =<1 a+i<z<b-1.

—n(z—b) b—Li<z<b

L0 z>b

By construction the {f,} are increasing, bounded and continuous, piecewise
linear. Moreover, limy, o0 fr /" 1(q,), this follows since

(@at D 6-20) =8 ot b—] > (ab)

Therefore, by the monotone convergence theorem

p(a,b) Z/]l(a,b) dp
_/ ILm fndu (fn/‘ﬂ(a,b) pointwise)

= lim | f,dpu (Monotone converge theorem)
n—oo

= lim | f,dv (f, bounded and continuous)
n—oo

= / lim f,dv (Monotone convergence theorem)
n—oo

= / Ligp) dv =v(a,b).

Similar to question 1 of homework 3, if two measures agree on a generating
collection for a o-algebra they agree on the entire o-algebra. While the open
intervals (a,b) have not been explicitly given as a generating collection for the
Borel o-algebra thus far, observe that any arbitrary closed interval can be written
as the intersection of open intervals

ﬂaf—bwL )

n=1
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