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MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

6.436J/15.085J Fall 2018 
Problem Set 4 

Readings: 
(a) Notes from Lecture 6 and 7. 
(b) [Cinlar] Sections I.4, I.5 and II.2 
(c) [GS] Chapter 3 

Exercise 1. Let N be a random variable that takes nonnegative integer values. 
Let X1, X2, . . ., be a sequence of i.i.d. discrete random variables that have finite 
expectation and are independent from N . Use iterated expectations to show that !N the expected value of Xi is E[N ]E[X1]. i=1 

Solution: 

N N " " 
E[ Xi] =  E[E[ Xi|N ]] 

i=1 i=1 

= E[NE[X1]] 

= E[N ]E[X1] 
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Exercise 2. Let X and Y be binomial with parameters (m, p) and (n, q), re-
spectively. 

(a) Show that if X is independent from Y , m = n, and p = q then X + Y is
binomial. Hint: Use the interpretation of the binomial, not algebra.

(b) Does the conclusion of part (a) remain valid if m ≠ n? If X and Y are
not independent? If p ̸= q?

(c) Show that if X and Y are independent, then
∞"

P(X + Y = k) = pX (i)pY (k − i).
i=−∞

(d) Use the result from part (c) to find the PMF of X + Y where X and
Y are independent Poisson random variables with parameters λ and µ,
respectively. Hint: The “binomial theorem” states that

n" n ibn−i (a + b)n = a . 
i 

i=0 

Solution: 

(a) X and Y can be constructed as sums of i.i.d. Bernoulli random variables.
Thus, as long as p = q, then X + Y can also be constructed as a sum
of i.i.d. Bernoulli random variables, which means that it has a Binomial
distribution.

(b) The conclusion of part (a) remains valid if m ̸= n using the same argu-
ment. If X and Y are not independent, it doesn’t hold. For example, for
X = Y with p ∈ (0, 1) and n >  1, we have that X + Y only takes values
in the even numbers, and not on odds. Thus, it cannot be binomial. If
p ̸= q, the conclusion also does not hold. For example, if p = 1, q = 1/2,
and n = m = 2, we have that P(X + Y = 1) = P(X + Y = 2) >
P(X + Y = 3), which cannot happen with a Binomial random variable.

(c) If X and Y are independent, then
∞"

P(X + Y = k) = pX|Y (i|k − i)pY (k − i)
i=−∞

∞"
= pX (i)pY (k − i).

i=−∞
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(d) If X and Y are independent Poisson random variables with parameters λ
and µ, respectively, we have

∞"
P(X + Y = k) = pX (i)pY (k − i)

i=−∞
k" k−i

−λ −µ λiµ 
= e e 

i!(k − i)!
i=0 

k" 
−(λ+ µ) 1 k k−i= e λi µ 

k! i 
i=0 

−(λ+ µ) (λ + µ)k 

= e , 
k! 

which is a Poisson random variable with parameter λ + µ. 
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Exercise 3. A 4-sided die has its four faces labeled as a, b, c, d. Each time the die 
is rolled, the result is a, b, c, or d, with probabilities pa, pb, pc, pd, respectively. 
Different rolls are statistically independent. The die is rolled n times. Let Na

and Nb be the number of rolls that resulted in a or b, respectively. Find the 
covariance of Na and Nb. 

Solution: Let {Xk | k = 1, . . . , n} be the i.i.d rolls of the dice. Using indicator
functions, the number of rolls resulting in a particular outcome is 

with mean 
n" 

E[Ne] = E [ {Xn = e}] =  npe.
k=1 

The covariance between Na and Nb is 
⎞⎤ 

n n " " 
( {Xi = a} − pa) ⎝ ( {Xj = b} − pb)⎠⎦

i=1 j=1 

n" 
= E [( {Xk = a} − pa)( {Xk = b} − pb})]

k=1 
n"" 

+ E [( {Xi = a} − pa) (  {Xj = b} − pb)] .
i=1 j≠i

This later term is zero since Xi and Xj are independent for i ̸= j. For this first
term 

E [( {Xk = a} − pa)( {Xk = b} − pb})]
= E [ {Xk = a} {Xk = b}] − pbE [ {Xk = a}] − paE [ {Xk = b}] +  papb
= 0  − 2papb + papb = −papb.

Hence 
cov(Na, Nb) =  −npapb.

Exercise 4. Suppose that X and Y are discrete random variables on (Ω,F ,P).
An elegant way of defining the conditional expectation of Y given X is as a 
random variable of the form φ(X) (where φ is a measurable function), such that 

E[φ(X)g(X)] = E[Y g(X)],
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1{Xn = e},
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for all measurable functions g. In this problem, we will prove that this condition 
defines the conditional expectation uniquely; that is, if we also have 

E[ψ(X)g(X)] = E[Y g(X)],

for every measurable function g, then φ(X) and ψ(X) are almost surely equal, 
i.e., P(φ(X) =  ψ(X)) = 1.

(a) Prove that the following sets are F-measurable: {φ(X) > ψ(X)} and,
for any integer n, An := {φ(X) > ψ(X) + 1/n}. 

(b) Assume the contradiction P(φ(X) =  ψ(X)) < 1 and use g(x) =  1An for
some appropriate n to show that the conditional expectation is unique.

Solution: 

(a) First, since X is discrete, φ(X) and ψ(X) are random variables, with-
out any further assumptions on φ,ψ. This implies that {ω|φ(X(ω)) >
ψ(X(ω))} and {ω|φ(X(ω)) > ψ(X(ω))} are F-measurable sets; in-
deed, since one can always fit a rational number between any two distinct
real numbers, we have

{φ(X) > ψ(X)} = {φ(X) > q} {q > ψ(X)}
q∈Q 

The set {φ(X) > ψ(X) +  a} is also F-measurable for any real a (and of
course, for 1/n) since, similarly, 

{φ(X) > ψ(X) +  a} = {φ(X) > q} {q − a > ψ(X)}
q∈Q 

(b) We now proceed to the proof of uniqueness. Assume by contradiction
that P(φ(X) =  ψ(X)) < 1. Without loss of generality, we can assume
P(φ(X) < ψ(X)) > 0. The sets

An = {ω|φ(X)(ω) + 1/n < ψ(X)(ω)}

form an increasing sequence of F-measurable sets and

{ω|φ(X)(ω) < ψ(X)(ω)} = An.
n≥1 

By continuity of probability, there exists some n such that P(An) > 0.
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Now, define g(x) =  1An . Its expectation is well-defined and by construc-
tion, 

E[φ(X)g(X)] = E[φ(X)1An ] 

≤ E[(ψ(X) − 1/n)1An ]

= E[ψ(X)g(X)] − (1/n)P (An)

< E[ψ(X)g(X)] 

which is a contradiction. 

Exercise 5. A machine is refilled each morning with n portions of vanilla and 
chocolate ice creams each (a total of 2n portions). Customers arrive sequentially, 
each getting one of the ice creams independently with probability 1/2. Consider 
the first moment when a customer receives an “out of order” message. Let X be 
the number of portions of the other type left at this moment, 0 ≤ X ≤ n. Find
the distribution of X . 

Solution: If the unlucky customer ordered vanilla, then there are X = m por-
tions of the chocolate left, if there were 2n − m portions were given earlier,

2n−m out of which n were vanilla. There are sequences of orders that lead to n 
that scenario, all happening with probability 2−(2n−m). Thus, since vanilla and 
chocolate are interchangeable, we have 

2−(2n−m) P[X = m] = . 
n 

Exercise 6. Let (Ω, F , µ) be a measure space. (So, µ is a measure, but not
necessarily a probability measure.) Let g : Ω → R be a nonnegative measurable
function. Let {Bi} be a sequence of disjoint measurable sets. Prove that 

∞"
g dµ = g dµ.

∪iBi Bi i=1 

(Be rigorous!) 
Note: As an application, this exercise gives another rich source of probability measures.
Namely, take f – a nonnegative measurable  function on the real line with  R f(x)dx = 1

(integral w.r.t. Lebesgue measure), and define a set-function P(A) =  fdx. TheA 

exercise shows that P(·) is a probability measure on (R , B). Function f is called the
probability density function (PDF) of P.
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∞ Solution: Let B = Bi andi=1 

k" 
gk = g ∪k = g Bi , i=1Bi 

i=1 

where the last equality holds since the Bi are disjoint. Moreover, for any arbi-
trary countable collection of disjoint sets {Un}

" 
! 

n∈N Un
= Un . 

n∈N

Since g is nonnegative gk is increasing to g B , and therefore, 

g dµ = g B dµ 
B 

= lim gk dµ (gk ↗ g B)
k→∞ 

= lim gk dµ ( Monotone convergence theorem) 
k→∞

k" 
= lim g Bi dµ 

k→∞
i=1 

k" 
= lim g Bi dµ (Linearity of integration) 

k→∞ 
i=1

∞" 
= g dµ. 

Bi i=1 

Exercise 7. [Optional, not to be graded] Let µ and ν be two finite measures on 
(R , B). Show that if 

f dµ  = f dν
R R

for all bounded continuous functions f then µ = ν. (Hint: write (a,b)(x) as an 
increasing limit of continuous functions.) 
Note: This exercise shows that measure on Borel σ-algebra is uniquely characterized 
by its values on continuous functions. This is true on R , Rn and any other topological
space. Similar to how it is sufficient to know measures only on intervals (−∞, a) it is
sufficient to consider only a handful of functions (such as all sines and cosines, or all 
exponents). This will be discussed later. 
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Solution: Let a < b  ∈ R . Consider the sequence of functions, defined for all
2 n >  and 0 otherwise, b−a 

⎧ 
0 x ≤ a

1 ⎪n(x− a) a < x < a+ ⎨ n
1 fn(x) =  1 a+ ≤ x ≤ b− 1 .
n n 

−n(x− b) b− 1 < x < bn ⎪⎩
0 x ≥ b

By construction the {fn} are increasing, bounded and continuous, piecewise
linear. Moreover, limn→∞ fn ↗ (a,b), this follows since 

(a, a+ 1 ), (b− 1 , b) → Ø [a+
1 
, b− 

1
] → (a, b).n n n n 

Therefore, by the monotone convergence theorem 

µ(a, b) = (a,b) dµ 

= lim fn dµ (fn ↗ (a,b) pointwise)
n→∞ 

= lim fn dµ (Monotone converge theorem) 
n→∞

= lim fn dν (fn bounded and continuous) 
n→∞

= lim fn dν (Monotone convergence theorem) 
n→∞ 

= (a,b) dν = ν(a, b). 

Similar to question 1 of homework 3, if two measures agree on a generating 
collection for a σ-algebra they agree on the entire σ-algebra. While the open 
intervals (a, b) have not been explicitly given as a generating collection for the 
Borel σ-algebra thus far, observe that any arbitrary closed interval can be written 
as the intersection of open intervals 

1 1 
[a, b] = (a− , b+ ).

n n 
n=1 
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