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MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

6.436J/15.085J Fall�2018
Problem Set 3 

Readings: 
Notes�from�Lecture�4�and�5.

Supplementary�readings:
[GS],�Sections�3.1-3.7.
[C],�Section�2.1
[BT],� for�background�on�counting� (which�we�don’t�cover)�go� through� the� last�
section�of�Ch.�1�of�[BT],�available�at:
http://athenasc.com/Prob-2nd-Ch1.pdf. 

Exercise�1.� Suppose�that�X1,�X2,�.�.�.�,�Xn,�.�.�.�are�random�variables�defined�on�
the�same�probability�space.�Show�that�max{X1,�X2},�supn�Xn,�and�lim�supn!1�Xn� 
are�random�variables,�using�only�Definition�1�in�the�notes�for�Lecture�4,�and�first� 
principles,�without�quoting�any�other�known�facts�about�measurability.

Solution: For any c 2 R, we have

{! : max{X1(!), X2(!)}  c} = {! : X1(!)  c} {! : X2(!)  c} .

Since X1 and X2 are random variables, we know that the set on the left-hand 
side is measurable, i.e., max{X1, X2} is a random variable. We also have

and thus sup Xn is a random variable.n 
To show lim supn Xn is a random variable, define gk(!) = supn k Xn(!).

We have shown that these functions are measurable for all k. We now argue that 

which will immediately imply that lim sup Xn is measurable. Indeed, supposen 
that ! belongs to the set on the right-hand side, i.e., gk(!) c, for all k. Since 
lim sup Xn(!) = limk gk(!), and using the definition of lim sup, it follows that 
lim sup Xn(!) c, and ! belongs to the set on the left-hand side. 
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{ω : Xn(ω) ≤ c} ,
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Conversely, suppose that ! belongs to the set on the left-hand side. Then, 
limk gk(!) =  
lim sup Xn(!) c. However, gk(!) is a nonincreasing sequence of numbers,n 
because the supremum is being progressively taken over smaller sets. It follows 
that gk(!) c for all k, and ! belongs to set on the right-hand side. 

Exercise 2. Given a distribution function FX show that FX (x) is continuous at 
x0 if and only if P(X = x0) = 0.

Solution: Since a distribution function is always right continuous, FX is con-
tinuous at x0 if and only if it is left-continuous at x0, that is limn!1 FX (xn) =
FX (x0) for any sequence xn " x0, or equivalently

Hence the desired equality is satisfied if and only if P(X = x0) = 0.

Exercise 3. The probabilistic method. A party of n = 20 people is gathered. 
A host selects some of the n(n 1)/2 pairs of people and introduces them to 
each other. Show that the host can do the introduction in such a way that for 
every group of 7 people there are at least two who are introduced to each other 
and there are at least two who are not. 

Hint: Consider introducing people randomly and independently. 

Note: The probabilistic method is a general method for proving existence: if 
you can prove that a randomly selected structure has certain desired properties 
with some positive probability (no matter how small), then a structure with these 
properties is guaranteed to exist. 

Solution: Assume that all possible pairs are introduced independently with 
probability 1/2. Let S be the set of all subsets of size 7 out of the 20 people
at the party. For each S 2 S , let AS be the event that there is a pair in S that
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lim
n→∞

P(X−1(−∞, xn]) = P(X−1(−∞, x0]).

The sequence of sets {X−1(−∞, xn]} is increasing, and by continuity of the
probability measures P and action of the inverse image under unions

lim
n→∞

P(X−1(−∞, xn]) = P(X−1
(⋃∞

n=1

(−∞, xn]

)
= P(X−1(−∞, x0))
= P(X−1(−∞, x0])− P(X = x0).
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was introduced and a pair in S that was not introduced. The probability of the 
complementary event is 

✓ ◆(7)1 2 1 P(Ac
S ) = 2 = , 

202 2 

7as Ac
S occurs if either all of the pairs get introduced or non of the pairs 2

get introduced. 
By the probabilistic method it suffices to show that A = S2S AS has pos-

itive probability, as this event would have zero probability if no such config-
uration existed, or equivalently, the complementary event does not have unit 
probability. Applying a union bound 

as desired. 

Exercise 4. Let X be a nonnegative integer random variable. Show that 

Be careful in citing whatever results from the lecture notes are needed to justify 
the steps in your derivation. 

Solution: By definition, 

where the third inequality follows from Eq. (1) in Lecture 5, which allows us to 
interchange the order of summation in double sums of nonnegative numbers. 
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7
) (

7
2

)
⋂

P(Ac) = P

(⋃
S∈S

Ac
S

)
≤
∑
S∈S

P(Ac
S) =

|S
20

|
2

=

(
20
7

)
220

< 0.08 < 1,

E[X] =
∑∞
n=1

P(X ≥ n).

E[X] =
∑∞
a=1

aP(X = a)

=
∑∞
a=1

∑a
n=1

P(X = a)

=
∑∞
n=1

∑∞
a=n

P(X = a)

=
∑∞
n=1

P(X ≥ n),
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Exercise 5. Let F1 and F2 be two CDFs, and suppose that F1(t) < F2(t), for all 
t. Assume that F1 and F2 are continuous and strictly increasing. Show that there
exist random variables X1 and X2, with CDFs F1 and F2, respectively, defined
on the same probability space such that X1 > X2. Hint: Think of simulating
X1 and X2 using a common “random number generator”.

Solution: Let ((0, 1),B, ) be the Lebesgue probability space on (0, 1), where
B is the Borel -algebra on (0, 1). By assumption Fi is strictly increasing and
continuous on R. Therefore, F 1 exists and is strictly increasing on (0, 1). Leti 
Xi : ((0, 1),B) ! (R,B), Xi = F 1 . Then the Xi are random variables, as thei 

1  

Hence X1(!) =  F 1(!) > F  1(!) =  X2(!) for all ! 2 (0, 1) and thusly,1 2 
X1 > X2. 

Exercise 6. Let {Xn} be a sequence of independent non-negative random vari-P1 ables. Show that sequence Xn is almost surely bounded if and only if n=1 P(Xn >
c) < 1 for some c. (Hint: Xn a.s. bounded simply means P(sup Xn = 1) =n 
0.) 

Solution: Suppose that there exists such a c. Then, with probability 1, the set 
S = {n | Xn > c} is finite. Then, sup Xn  max{c,maxn2S Xn} < 1, a.s.n 

Conversely, if if no such c exists, then Xn > c, i.o. By letting k range over 
the integers, we see that except for a countable union of zero measure sets, then 
for all k, there exists nk such that X > k, so that sup Xn = 1, a.s.nk n 

(Alternate Solution). The event {sup Xn = 1} can be expressed asn 
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λ
σ

(−∞, t]) = λ(Fi(−∞, t]) = λ((0, Fi(t)]) = Fi(t).FXi(t) = λ(Xi
−1

Moreover, for t ∈ (0, 1)

t = F1(F1
−1(t)) < F2(F1

−1(t))

=⇒ F2
−1(t) < F2

−1(F2(F1
−1(t))) = F1

−1(t).

F−1i are continuous which implies measurable, with CDFs

– –

{sup
n
Xn =∞} =

m=1 n=1

⋂∞ ⋂∞ ⋃∞
k=n

{Xk > m}.

Suppose supnXn(ω) = ∞. Suppose there exists natural numbers m0 and n0
so that supk≥n0

≤ m0, then

sup
n
Xn(ω) = max

{
max

j=1,...,n0−1
Xj(ω), sup

k≥n0

Xk(ω)

}

≤ max

{
max

j=1,...,n0−1
Xj(ω),m0

}
<∞,
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a contradiction. Conversely suppose for all M 2 N and for all N 2 N there
exists kN N such that XkN (!) > M , then 

sup Xn(!) XkN > M.
n 

Therefore the sup is larger than any natural number and must be infinite. Hence 
the desired relation holds. 

Rewriting the above expression 

Hence, for all m 2 N 
✓

P sup Xn = 1  P (Xn > m i.o. } . (1) 
n 

Moreover, as the events {Xn > m} are nested, {Xn > m + 1} ⇢ {Xn > m},
by continuity of probability 

✓ ◆
P sup Xn = 1 = lim  P (Xn > m i.o ) . (2) 

n m!1 

Suppose Xn is almost surely bounded. Suppose for all c 2 R

then as the {Xn} are independent by the Borel Cantelli Lemma, for all c,

P(Xn > c i.o ) = 1.

Conversely suppose there exists c 2 R such that
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)

{
sup
n
Xn =∞

}
=
⋂∞
m=1

{Xn > m i.o. } .

∑∞
n=1

P(Xn > c) =∞.

In particular this holds for all m ∈ N. Applying (2)

P
(
sup
n
Xn =∞

)
= lim

m→∞
P (Xn > m i.o ) = lim

m→∞
1 = 1,

a contradiction.

∑∞
n=1

P(Xn > c) <∞ =⇒ P (Xn > c i.o) = 0,
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the nodes one at a time, putting them in the independent set as long as there 
are no conflicts with previously examined nodes. Find the expected value of the 
resulting set. 

Solution: The result in this problem is known as Turan’s theorem. Let V be the 
set of vertices of G and note |V | = n. Consider ordering the n nodes of a graph
according to a random permutation. Nodes in this ordering have neighbors that 
come earlier, or later in the ordering. 

Let I be the set of nodes whose neighbors all come after them in the ran-
domly selected ordering. Note that I must be an independent set. We can write 
the random variable |I| as the sum of indicator variables Xv, where Xv is 1 if
and only if node v is in I , and zero otherwise. 

Under a random ordering, the probability that a node v is in I , is at least 
the probability that a node is the first among it and all its dv neighbors. This is 
1/(dv + 1). Therefore, 

6 

by Borel Cantelli. Therefore, there exists an m0 ∈ N, m0 ≥ c and by mono-
tonicity of P and (1)

P(sup
n
Xn =∞) ≤ P(Xn ≥ m0) ≤ P(Xn ≥ c) = 0.

Hence Xn is almost surely bounded.

Exercise 7. (Another application of the probabilistic method.) Let G be an
undirected graph with neither loops nor multiple edges, and write dv for the
degree of vertex v (i.e., the number of edges incident on v). An independent
set is a set of vertices no pair of which is joined by an edge. Let α(G) be the
size of the lar st independent set of G. Use the probabilistic method to show
that α(G) ≥

ge∑
v 1/(1 + dv). Hint: Order the nodes at random, and examine

E(|I|) ≥
∑
v∈V

1

dv + 1
,

and therefore there must exist some ordering for which the size of I is at least
as big as this. This gives a lower bound on α(G), and the result follows.
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In addition, you need to be sure that you can solve elementary problems. As a 
check, make sure you are able to solve the next problem (not to be handed in). 

Drill problem: At his workplace, the first thing Oscar does every morning is to 
go to the supply room and pick up one, two, or three pens with equal probability 
1/3. If he picks up three pens, he does not return to the supply room again that 
day. If he picks up one or two pens, he will make one additional trip to the supply 
room, where he again will pick up one, two, or three pens with equal probability 
1/3. (The number of pens taken in one trip will not affect the number of pens 
taken in any other trip.) Calculate the following: 

(a) The probability that Oscar gets a total of three pens on any particular day.

(b) The conditional probability that he visited the supply room twice on a
given day, given that it is a day in which he got a total of three pens.

(c) E[N ] and E[N | C], where E[N ] is the unconditional expectation of N ,
the total number of pens Oscar gets on any given day, and E[N | C] is the
conditional expectation of N given the event C = {N > 3}. 

(d) N |C , the conditional standard deviation of the total number of pens Oscar
gets on a particular day, where N and C are as in part (c). 

(e) The probability that he gets more than three pens on each of the next 16
days.

(f) The conditional standard deviation of the total number of pens he gets in
the next 16 days given that he gets more than three pens on each of those
days.
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