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MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

6.436J/15.085J Fall 2018
Problem Set 2 

Readings: 
Notes from Lecture 2 and 3. 

Supplementary readings: 
[GS], Sections 1.4-1.7. 
[C], Chapter 1.3 
[W], Chapter 1. 

Exercise 1. Consider a probabilistic experiment involving infinitely many coin 
tosses, and let Ω = {0, 1}∞ (think of 0 and 1 corresponding to heads and tails,
respectively). A typical element ω ∈ Ω is of the form ω = (ω1,ω2, . . .), with
ωi ∈ {0, 1}. 

As in the notes for Lecture 2, we define Fn as the σ-field consisting of all
sets whose occurrence or nonoccurrence can be determined by looking at the 
result of the first n coin flips. The σ-field F for this model is defined as the
smallest σ-field that contains all of the Fn. 

(a) Consider the event H consisting of all ω with the following property.
There exists some time t at which the number of ones so far is greater
than or equal to the number of zeros so far. Show that H ∈ F .

(b) (Harder) Consider the set A of all ω for which the limit
n!1 

lim ωi
n→∞ n 

i=1

exists. Show that A ∈ F .
Note: This is important because, once we have also chosen a probability 
measure, it allows us to make statements about the probability that this 
limit (the long-term fraction of heads) exists. 
Hint: The event Ax “the limit defined above exists and is equal to x”" 
belongs to F . However, this does not imply that Ax ∈ F (why?). Youx 
need to find some other way of describing the event A in terms of unions, 
complements, etc., of events in the Fn. For example, use the fact that a
sequence converges if and only if it is a “Cauchy sequence.” 

Solution: 
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n (a) Let Sn = {(ω1,ω2, . . . ) | i=1 ωi ≥ ⌈n/2⌉}, i.e., Sn is the set of se-
quences where there are at least as many ones, in the first n entries as
there are zeroes. Then,

(b) Let
n!1 

an = ωi. 
n 

i=1

According to Cauchy criterion, the sequence {an} converges if and only
if for any positive integer r, there exists some positive integer N such that 
for any n > m > N , 

|an − am| < 1/r.

For a pair of positive integers n > m, we define 

n m ! !1 1 
A1/r,n,m = ω : ωi − ωi < 1/r ∈ Fn.

n m 
i=1 i=1 

Thus, 

Exercise 2. Suppose that the events An satisfy P(An) → 0 and ∞ P(Ac ∩n=1 n

An+1) < ∞. Show that P(An i.o.) = 0. Note: An i.o., stands for “An occurs
infinitely often”, or “infinitely many of the An occur”, or just lim sup An. Hint:n 
Borel-Cantelli. 

Solution: Define the set 

∞ We wish to show P(A) = 0. Now, A ⊆ ∪  Am for all m, and by monotonic-m=n 
∞ ity of the measure, P(A) ≤P(∪ Am), for all n. In addition, m=n 

Am = An ∪ (An+1 \ An) ∪ (An+2 \ An+1) ∪ · · ·
m=n 

c c = An ∪ (An+1 ∩An) ∪ (An+2 ∩An+1) ∪ · · · .

2 

H =
⋃∞
n=1

Sn.

{
ω

}

A =
⋂∞
r=1

⋃∞
N=1

⋂∞
m=N

⋂∞
n=m

A1/r,n,m ∈ F .

A = lim sup
n→∞

An =
⋂∞
n=1

⋃∞
m=n

Am.

⋃∞
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Therefore, by the union bound, 

P(A) ≤ P Am

m=n 
∞!

≤ P(An) +  P(Am+1 ∩ Ac
n).

m=n 

This holds for all n, and therefore it holds in the limit as n goes to infin-
ity. But the limit of the final expression is zero, since P(An) → 0, and since

P(Ac ∞ 
n ∩ An+1) < ∞. n=1 

Exercise 3. Consider one of our standard probability spaces (Ω, F , P), with
Ω  = (0, 1], F – Borel and  P – the Lebesgue measure. To every element ω ∈ Ω
we assign its infinite decimal representation. We disallow decimal representa-
tions that end with an infinite string of nines. Under this condition, every number 
has a unique decimal representation. 

(a) Let A be the set of points in (0, 1] whose decimal representation contains at
least one digit equal to 9. Find P[A].

(b) Let B be the set of points that have infinitely many 9’s in the decimal repre-
sentation. Find P[B]. (Hint: Borel-Cantelli).

Solution: Part (a). 
We will find the Lebesgue measure of Ac , the set of points in (0, 1] whose 

decimal representation contains no digit equal to 9. We  can  scale  that  set  (by
multiplying it with a real number) to obtain the set 

1 
Ac A0 = , 

10 

which is the set of points in (0, 1] whose decimal representation starts with a 0, 
and contains no digit equal to 9 afterwards. Since the set A0 is just the same as 

1 Ac but scaled down by a factor of 10, we have that P(A0 ) =  P(Ac). Further-10 
more, we can do translations of that set to obtain analogous sets starting with 
different digits. In particular, let us define 

k 
Ak = +A0

10 
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as the set of points in (0, 1] whose decimal representation starts with a k, and 
has no digit equal to 9 afterwards. Note that these sets are all disjoint, and that 
we have 

Ac = Ak. 
k=0 

Then, using the finite additivity property of measures, and the fact that the 
Lebesgue measure is invariant by translations, we obtain 

P(Ac) = P Ak

k=0 

8! 
= P(Ak)

k=0 

8! 
= P(A0 )

k=0 

8! 1 
= P(Ac)

10 
k=0 

9 
= P(Ac).

10 

This equality can only be true if P(Ac) = 0, and thus P(A) = 1.
Part (b). Let Bi be the event that there is a 9 in the i-th position of the 

expansion. These events are independent with P(Bi) = 1/10, for all i ≥ 1.
Thus, we have 

∞!
P(Bi) = ∞.

i=1 

Then, by Borel-Cantelli, we have 

P(B) = P({Bi i.o.}) = 1.

Exercise 4. Consider a probability space (Ω, F , P), and let A be an event (ele-
ment of F). Let G be collection of all events that are independent from A. Show
that G need not be a σ-algebra. 

Solution: G need not be a σ-algebra. For example, let X, Y be i.i.d., with
P(X = 1) = P(X = 0) = 1/2. Let Z be the mod two sum of X and Y , so
that if X = Y , then Z = 0, and if X ̸= Y , then Z = 1. Then  pairwise,  these
three random variables are independent. Let A be the event {Z = 1}. Now, the
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events B1 = {X = 1}, B2 = {Y = 1} are both independent of A. However, 
B1 ∩ B2 is not independent of A. 

Exercise 5. Let A1, A2, . . .  and B be events. 

(a) Suppose that Ak ↘ A, i.e. Ak ⊃Ak+1 and A = ∩∞ Ak. Assume B is k=1 
independent of Ak. Show that B is independent of A. 

(b) Suppose that A1 is independent of B and also that A2 is independent of 
B. Is it true that A1 ∩ A2 is independent of B? Prove or give a counterex-
ample. 

Solution: 
(a) The sequence of events Ak ∩ B is decreasing and converges to the event 

A ∩ B. [To see this, note that (∩k≥1Ak) ∩ B = ∩k≥1 (Ak ∩ B).] Using 
the continuity of probability measures in the first and last equalities below, 
and independence in the middle equality, we have 

P(A ∩ B) =  lim  P(Ak ∩ B) =  lim  P(Ak)P(B) = P(A)P(B). 
k→∞ k→∞ 

(b) Consider two independent and fair coin tosses and let Ai be the event 
that the ith toss results in heads. Let B be the event that both tosses give 
the same result. It is easily checked that P(Ai ∩ B) =  P({HH}) =  
1/4 =  P(Ai)P(B), so that pairwise independence holds. On the other 
hand, P(B | A1 ∩ A2) = 1  ̸= P(B). Thus, A1 ∩ A2 and B are not 
independent. 

Exercise 6. Let (Ω, F , P) be a probability space. Show that function 

d(A, B) ! P[A△B] 

satisfies the triangle inequality (i.e. d(A, B) ≤ d(A, C) + d(C, B) for any 
A, B, C). 

Fun fact: Under this pseudo-metric any algebra is dense in the σ-algebra it 
generates. Thus, any event in a complicated σ-algebra (such as Borel) can be 
approximated arbitrarily well by events in a simple algebra (like finite unions of 
[a, b)). 

Solution: The symmetric difference is A△B = (A\B) ∪ (B\A) 
A△B = (A\B) ∪ (B\A) 

= (A ∩ Bc) ∪ (B ∩ Ac) 

= (A ∩ Bc ∩ C) ∪ (A ∩ Bc ∩ Cc) ∪ (B ∩ Ac ∩ C) ∪ (B ∩ Ac ∩ Cc) 

⊂ (C\B) ∪ (A\C) ∪ (C\A) ∪ (B\C) 

= (A△C) ∪ (C△B). 
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Hence, by the union bound, 

P(A△B) ≤P(A△C) + P(C△B). 

Exercise 7. [Optional, not to be graded] Let Ω1 ⊂ Ω and let C be some collec-
tion of subsets of Ω. Let 

C1 = C ∩ Ω1 ! {A ∩ Ω1 : A ∈  C}  

and denote by F1 (F) the minimal σ-algebra on Ω1 (Ω) generated by C1 (C). 
Also define 

F2 = F ∩ Ω1 ! {A ∩ Ω1 : A ∈  F}  . 

F2 is called a trace of F on Ω1. Show F1 = F2. (Hint: show that collection 
G = {E ∈ F : E ∩ Ω1 ∈ F1} is a monotone class.) 

Solution: For a collection D and a space Ω let αΩ(D) denote the smallest al-
gebra of sets in Ω containing D. 

Claim: αΩ1 (C ∩ Ω1) = αΩ(C) ∩ Ω1. 
By definition C ⊂ αΩ(C) and therefore, C∩Ω1 ⊂ αΩ(C)∩Ω1. The empty set 

φ = φ∩Ω1 ∈ αΩ(C)∩Ω1, as αΩ(C) is an algebra. Let E∩Ω1 ∈ αΩ(C)∩Ω1, then 
c (E∩ Ω1) = Ω1\(E∩ Ω1) = Ec ∩ Ω1 ∈ αΩ(C)∩ Ω1, as E ∈ αΩ(C) and αΩ(C) 

is an algebra. Let E1 ∩Ω1, E2 ∩Ω1 ∈ αΩ(C)∩Ω1, then (E1 ∩Ω1)∩(E2 ∩Ω2) =  
(E1 ∩ E2) ∩ Ω1 ∈ αΩ(C) ∩ Ω1, as E1, E2 ∈ αΩ(C) and αΩ(C) is an algebra. 
Hence αΩ(C) is an algebra of sets in Ω1 containing C ∩ Ω1, and by minimality 
of αΩ1 (C ∩ Ω1), αΩ1 (C ∩ Ω1) ⊂ αΩ(C) ∩ Ω1. 

Consider the set 

D1 = {E ∈ 2Ω | E ∩ Ω1 ∈ αΩ1 (C ∩ Ω1)}. 

The collection C ⊂ D1, as C ∩ Ω1 ⊂ αΩ1 (C ∩ Ω1) by definition. The empty 
set φ ∩ Ω1 = φ ∈ αΩ1 (C ∩ Ω1), as αΩ1 is an algebra. Thus φ ∈ D1. Let 

c E ∈ D1, then Ec ∩ Ω1 = Ω1\(E ∩ Ω1) = (E ∩ Ω1) ∈ αΩ1 (C ∩ Ω1), as 
E ∩ Ω1 ∈ αΩ1 (C ∩ Ω1) and αΩ1 (C ∩ Ω1) is an algebra. Thus D1 is closed under 
complements. Let E1, E2 ∈ D1, then (E1 ∩E2)∩Ω1 = (E1 ∩Ω1)∩(E2 ∩Ω1) ∈ 
αΩ1 (C ∩ Ω1), as E1 ∩ Ω1, E2 ∩ Ω1 ∈ αΩ1 (C ∩ Ω1) and αΩ1 (C ∩ Ω1) is an al-
gebra. Thus D1 is closed under intersections and D1 is an algebra of sets in 
Ω containing C. Therefore, by minimality αΩ(C) ⊂ D1. By definition of D1, 
αΩ(C) ∩ Ω1 ⊂ αΩ1 (C ∩ Ω1), which proves the claim. 

Claim: For a collection of sets D and a space Ω, σΩ(D) = σΩ(αΩ(D)). 
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By definition D ⊂ αΩ(D) ⊂ σΩ(D), and by monotonicity of the σΩ(·) op-
erator, see recitation 2, σΩ(D) ⊂ σΩ(αΩ(D)) ⊂ σΩ(σΩ(D)) = σΩ(D). Thus 
σΩ(D) = σΩ(αΩ(D)). 

Combining the results of the two claims σΩ1 (αΩ(C) ∩ Ω1) =  σΩ1 (αΩ1 (C ∩ 
Ω1)) = σΩ1 (C ∩ Ω1) and σΩ(αΩ(C)) = σΩ(C). Therefore, it suffices to 
show that σΩ1 (αΩ(C) ∩ Ω1) = σΩ(αΩ(C)) ∩ Ω1. By the monotone class the-
orem, as αΩ(C) is an algebra, this holds if and only if µΩ1 (αΩ(C) ∩ Ω1) =  
µΩ(αΩ(C)) ∩ Ω1. Let A := αΩ(C). 

By definition A ⊂ µΩ(A) and therefore, A ∩ Ω1 ⊂ µΩ(A) ∩ Ω1. Let 
{En ∩ Ω1} ∈ µΩ(A) ∩ Ω1, with (En ∩ Ω1) ⊂ (En+1 ∩ Ω1). The sequence 

′ {En} may not be monotone however, E = ∪n En is monotonic and by the n k=1 
′ monotonicity of {En ∩Ω1}, (∪n Ek)∩Ω1 = En ∩Ω1, i.e. En ∩Ω1 = E ∩Ω1. k=1 n 

′ Since µΩ(A) is a monotone class E ↗ E ∈ µΩ(A). Therefore, En ∩ Ω1 ↗ n " " ∞ ∞ E∩Ω1 ∈ µΩ(A)∩Ω1, this follows since (En ∩Ω1) = (  En)∩Ω1 = n=1 n=1 
E∩Ω1. Similarly, let {En ∩Ω1} ∈ µΩ(A)∩Ω1, with (En ∩Ω1) ⊃(En+1 ∩Ω1), 
and, by the construction given for increasing sets, WLOG En ⊃ En+1. Since 
µΩ(A) is a monotone class En ↘ E ∈ µΩ(A). Therefore, En ∩Ω1 ↘ E∩Ω1 ∈ 

∞ ∞ µΩ(A)∩ Ω1, this follows since (En ∩ Ω1) = (  n=1 En)∩ Ω1 = E ∩ Ω1. n=1 
Hence µΩ(A) ∩ Ω1 is a monotone class of sets in Ω1 containing A ∩ Ω1 and by 
minimality µΩ1 (A ∩ Ω1) ⊂ µΩ(A) ∩ Ω1. 

Consider the set 

D2 = {E ∈ 2Ω | E ∩ Ω1 ∈ µΩ1 (A ∩ Ω1)}. 

The algebra A ⊂ D2, as A ∩ Ω1 ⊂ αΩ1 (A ∩ Ω1) by definition. Let {En} be an 
increasing sequence of sets in D2, then {En ∩ Ω1} is an increasing sequence of 
sets in µΩ1 (A ∩ Ω1), and as µΩ1 (A ∩ Ω1) is a monotone class, (En ∩ Ω1) ↗ 
(E ∩ Ω1) ∈ µΩ1 (A ∩ Ω1). Therefore, En ↗ E ∈ D1. A similar argument 
holds for a decreasing sequence of sets. Hence D2 is a monotone class of sets in 
Ω containing A. Therefore, by minimality µΩ(A) ⊂ D2. By definition of D2, 
µΩ(A) ∩ Ω1 ⊂ µΩ1 (A ∩ Ω1). 

Hence µΩ(A)∩ Ω1 = µΩ1 (A ∩ Ω1), and thusly, σΩ(C)∩ Ω1 = σΩ1 (C ∩ Ω1) 
as desired. 

Exercise 8. [Optional, not to be graded] Let Ω  = [0, 1) and let F0 be the 
collection of finite unions ∪N ai, bi) for ai, bi ∈ [0, 1]. For any A ∈ F0 , let i=1[ 
P[A] = 1 if one of the bi = 1, and P[A] = 0 otherwise. In Lectures we showed 
that F0 is an algebra but not a σ-algebra. 

(a) Show that P is a non-negative (finitely) additive set-function on F0 . 
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(b) Show that P is not countably additive on F0 .

Solution:

(a) For all A ∈ F0 , P [A] ∈ {0, 1}. Thus P is non-negative." N1 (1) (1) Let A1, A2 ∈ F0 be disjoint. Then A1 = [a , b  ) and A2 =i=1 i i " (2) (2) N2 [a , b  ), where WLOG the intervals are ordered and non are emptyj=1 j j 
(m) (m) (m) (m) a < b  < . . . < a  < b  . As A1 ∩ A2 = Ø, A1 ∪ A2 =1 1 Nm Nm " N1+N2 (3) (3) (3) (1) (2) (3) (1) (2) [a , b  ), where a ∈ {a , a  } and b ∈ {b , b  } are thek=1 k k k i j k i j 

results of interleaving the two collections of intervals and are again WLOG 
(1) ordered. By construction P[A1] = 1 if and only if bN1 

= 1, P[A2] = 1
(2) (3) if and only if b = 1 and P[A1 ∪ A2] = 1 if and only if b = 1.N2 N1+N2 

(3) (1) (2) Moreover, b = 1 if and only if either b = 1 or b = 1. Suppose N1+N2 N1 N2 
(3) (1) b = 1 and WLOG assume b = 1, then, as A1 and A2 are disjoint, N1+N2 N1 
(2)b ̸= 1N2 

P (A1 ∪ A2) = 1 = 1 + 0 = P (A1) + P (A2) .

(3) (1) (2) Suppose b ̸ = 1 nor b = 1 then neither b = 1N1+N2 N1 N2 

P (A1 ∪ A2) = 0 = 0 + 0 = P (A1) + P (A2) .

1 (b) Let An = [0, 1 − ). Then, for all n, P (An) = 0. Moreover, An ⊂ An+1n " ∞ and limn→∞ An = n=1 An = [0, 1) ∈ F0 . Hence, by continuity of
probability, 

lim P (An) =  lim  0 = 0 ̸= 1 = P ([0, 1)) = P lim An ,
n→∞ n→∞ n→∞ 

and P is not countably additive.
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