MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.436J/15.085J Problem Set 2 Fall 2018

Readings:

Notes from Lecture 2 and 3.

Supplementary readings:

[GS], Sections 1.4-1.7.[C], Chapter 1.3[W], Chapter 1.

Exercise 1. Consider a probabilistic experiment involving infinitely many coin tosses, and let $\Omega = \{0, 1\}^{\infty}$ (think of 0 and 1 corresponding to heads and tails, respectively). A typical element $\omega \in \Omega$ is of the form $\omega = (\omega_1, \omega_2, ...)$, with $\omega_i \in \{0, 1\}$.

As in the notes for Lecture 2, we define \mathcal{F}_n as the σ -field consisting of all sets whose occurrence or nonoccurrence can be determined by looking at the result of the first *n* coin flips. The σ -field \mathcal{F} for this model is defined as the smallest σ -field that contains all of the \mathcal{F}_n .

- (a) Consider the event H consisting of all ω with the following property. There exists some time t at which the number of ones so far is greater than or equal to the number of zeros so far. Show that $H \in \mathcal{F}$.
- (b) (Harder) Consider the set A of all ω for which the limit

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \omega_i$$

exists. Show that $A \in \mathcal{F}$.

Note: This is important because, once we have also chosen a probability measure, it allows us to make statements about the probability that this limit (the long-term fraction of heads) exists.

Hint: The event A_x "the limit defined above exists and is equal to x" belongs to \mathcal{F} . However, this does not imply that $\bigcup_x A_x \in \mathcal{F}$ (why?). You need to find some other way of describing the event A in terms of unions, complements, etc., of events in the \mathcal{F}_n . For example, use the fact that a sequence converges if and only if it is a "Cauchy sequence."

Solution:

(a) Let $S_n = \{(\omega_1, \omega_2, \dots) \mid \underset{i=1}{n} \omega_i \ge \lceil n/2 \rceil\}$, i.e., S_n is the set of sequences where there are at least as many ones, in the first n entries as there are zeroes. Then,

$$H = \bigcup_{n=1}^{\infty} S_n.$$

(b) Let

$$a_n = \frac{1}{n} \sum_{i=1}^n \omega_i.$$

According to Cauchy criterion, the sequence $\{a_n\}$ converges if and only if for any positive integer r, there exists some positive integer N such that for any n > m > N,

$$|a_n - a_m| < 1/r.$$

For a pair of positive integers n > m, we define

$$A_{1/r,n,m} = \left\{ \omega : \frac{1}{n} \sum_{i=1}^{n} \omega_i - \frac{1}{m} \sum_{i=1}^{m} \omega_i < 1/r \right\} \in \mathcal{F}_n.$$

Thus,

$$A = \bigcap_{r=1}^{\infty} \bigcup_{N=1}^{\infty} \bigcap_{m=N}^{\infty} \bigcap_{n=m}^{\infty} A_{1/r,n,m} \in \mathcal{F}.$$

Exercise 2. Suppose that the events A_n satisfy $\mathbb{P}(A_n) \to 0$ and $\bigcap_{n=1}^{\infty} \mathbb{P}(A_n^c \cap A_{n+1}) < \infty$. Show that $\mathbb{P}(A_n \text{ i.o.}) = 0$. *Note:* A_n i.o., stands for " A_n occurs infinitely often", or "infinitely many of the A_n occur", or just $\limsup_n A_n$. *Hint:* Borel-Cantelli.

Solution: Define the set

$$A = \limsup_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_m.$$

We wish to show $\mathbb{P}(A) = 0$. Now, $A \subseteq \bigcup_{m=n}^{\infty} A_m$ for all m, and by monotonicity of the measure, $\mathbb{P}(A) \leq \mathbb{P}(\bigcup_{m=n}^{\infty} A_m)$, for all n. In addition,

$$\bigcup_{m=n}^{\infty} A_m = A_n \cup (A_{n+1} \setminus A_n) \cup (A_{n+2} \setminus A_{n+1}) \cup \cdots$$
$$= A_n \cup (A_{n+1} \cap A_n^c) \cup (A_{n+2} \cap A_{n+1}^c) \cup \cdots$$

Therefore, by the union bound,

$$\mathbb{P}(A) \leq \mathbb{P}\left(\bigcup_{m=n}^{\infty} A_{m}\right)$$

$$\leq \mathbb{P}(A_{n}) + \sum_{m=n}^{\infty} \mathbb{P}(A_{m+1} \cap A_{n}^{c}).$$

This holds for all n, and therefore it holds in the limit as n goes to infinity. But the limit of the final expression is zero, since $\mathbb{P}(A_n) \to 0$, and since $\sum_{n=1}^{\infty} \mathbb{P}(A_n^c \cap A_{n+1}) < \infty$.

Exercise 3. Consider one of our standard probability spaces $(\Omega, \mathcal{F}, \mathbb{P})$, with $\Omega = (0, 1], \mathcal{F}$ – Borel and \mathbb{P} – the Lebesgue measure. To every element $\omega \in \Omega$ we assign its infinite decimal representation. We disallow decimal representations that end with an infinite string of nines. Under this condition, every number has a unique decimal representation.

- (a) Let A be the set of points in (0, 1] whose decimal representation contains at least one digit equal to 9. Find $\mathbb{P}[A]$.
- (b) Let B be the set of points that have infinitely many 9's in the decimal representation. Find $\mathbb{P}[B]$. (Hint: Borel-Cantelli).

Solution: Part (a).

We will find the Lebesgue measure of A^c , the set of points in (0, 1] whose decimal representation contains no digit equal to 9. We can scale that set (by multiplying it with a real number) to obtain the set

$$A_0 = \frac{1}{10}A^c,$$

which is the set of points in (0, 1] whose decimal representation starts with a 0, and contains no digit equal to 9 afterwards. Since the set A_0 is just the same as A^c but scaled down by a factor of 10, we have that $\mathbb{P}(A_0) = \frac{1}{10}\mathbb{P}(A^c)$. Furthermore, we can do translations of that set to obtain analogous sets starting with different digits. In particular, let us define

$$A_k = \frac{k}{10} + A_0$$

as the set of points in (0, 1] whose decimal representation starts with a k, and has no digit equal to 9 afterwards. Note that these sets are all disjoint, and that we have

$$A^c = \bigcup_{k=0}^{8} A_k.$$

Then, using the finite additivity property of measures, and the fact that the Lebesgue measure is invariant by translations, we obtain

$$\mathbb{P}(A^c) = \mathbb{P}\left(\bigcup_{k=0}^{8} A_k\right)$$
$$= \sum_{k=0}^{8} \mathbb{P}(A_k)$$
$$= \sum_{k=0}^{8} \mathbb{P}(A_0)$$
$$= \sum_{k=0}^{8} \frac{1}{10} \mathbb{P}(A^c)$$
$$= \frac{9}{10} \mathbb{P}(A^c).$$

This equality can only be true if $\mathbb{P}(A^c) = 0$, and thus $\mathbb{P}(A) = 1$.

Part (b). Let B_i be the event that there is a 9 in the *i*-th position of the expansion. These events are independent with $\mathbb{P}(B_i) = 1/10$, for all $i \ge 1$. Thus, we have

$$\sum_{i=1}^{\infty} \mathbb{P}(B_i) = \infty$$

Then, by Borel-Cantelli, we have

$$\mathbb{P}(B) = \mathbb{P}(\{B_i \ i.o.\}) = 1.$$

Exercise 4. Consider a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, and let *A* be an event (element of \mathcal{F}). Let \mathcal{G} be collection of all events that are independent from *A*. Show that \mathcal{G} need not be a σ -algebra.

Solution: \mathcal{G} need not be a σ -algebra. For example, let X, Y be i.i.d., with $\mathbb{P}(X = 1) = \mathbb{P}(X = 0) = 1/2$. Let Z be the mod two sum of X and Y, so that if X = Y, then Z = 0, and if $X \neq Y$, then Z = 1. Then pairwise, these three random variables are independent. Let A be the event $\{Z = 1\}$. Now, the

events $B_1 = \{X = 1\}$, $B_2 = \{Y = 1\}$ are both independent of A. However, $B_1 \cap B_2$ is not independent of A.

Exercise 5. Let A_1, A_2, \ldots and B be events.

- (a) Suppose that $A_k \searrow A$, i.e. $A_k \supset A_{k+1}$ and $A = \bigcap_{k=1}^{\infty} A_k$. Assume B is independent of A_k . Show that B is independent of A.
- (b) Suppose that A₁ is independent of B and also that A₂ is independent of B. Is it true that A₁ ∩ A₂ is independent of B? Prove or give a counterexample.

Solution:

(a) The sequence of events $A_k \cap B$ is decreasing and converges to the event $A \cap B$. [To see this, note that $(\bigcap_{k \ge 1} A_k) \cap B = \bigcap_{k \ge 1} (A_k \cap B)$.] Using the continuity of probability measures in the first and last equalities below, and independence in the middle equality, we have

$$\mathbb{P}(A \cap B) = \lim_{k \to \infty} \mathbb{P}(A_k \cap B) = \lim_{k \to \infty} \mathbb{P}(A_k) \mathbb{P}(B) = \mathbb{P}(A) \mathbb{P}(B).$$

(b) Consider two independent and fair coin tosses and let A_i be the event that the *i*th toss results in heads. Let B be the event that both tosses give the same result. It is easily checked that P(A_i ∩ B) = P({HH}) = 1/4 = P(A_i)P(B), so that pairwise independence holds. On the other hand, P(B | A₁ ∩ A₂) = 1 ≠ P(B). Thus, A₁ ∩ A₂ and B are not independent.

Exercise 6. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Show that function

$$d(A,B) \triangleq \mathbb{P}[A \triangle B]$$

satisfies the triangle inequality (i.e. $d(A, B) \leq d(A, C) + d(C, B)$ for any A, B, C).

Fun fact: Under this pseudo-metric any algebra is dense in the σ -algebra it generates. Thus, any event in a complicated σ -algebra (such as Borel) can be approximated arbitrarily well by events in a simple algebra (like finite unions of [a, b)).

Solution: The symmetric difference is $A \triangle B = (A \setminus B) \cup (B \setminus A)$

$$\begin{aligned} A \triangle B &= (A \backslash B) \cup (B \backslash A) \\ &= (A \cap B^c) \cup (B \cap A^c) \\ &= (A \cap B^c \cap C) \cup (A \cap B^c \cap C^c) \cup (B \cap A^c \cap C) \cup (B \cap A^c \cap C^c) \\ &\subset (C \backslash B) \cup (A \backslash C) \cup (C \backslash A) \cup (B \backslash C) \\ &= (A \triangle C) \cup (C \triangle B). \end{aligned}$$

Hence, by the union bound,

$$\mathbb{P}(A \triangle B) \le \mathbb{P}(A \triangle C) + \mathbb{P}(C \triangle B).$$

Exercise 7. *[Optional, not to be graded]* Let $\Omega_1 \subset \Omega$ and let C be some collection of subsets of Ω . Let

$$\mathcal{C}_1 = \mathcal{C} \cap \Omega_1 \triangleq \{A \cap \Omega_1 : A \in \mathcal{C}\}$$

and denote by \mathcal{F}_1 (\mathcal{F}) the minimal σ -algebra on Ω_1 (Ω) generated by \mathcal{C}_1 (\mathcal{C}). Also define

$$\mathcal{F}_2 = \mathcal{F} \cap \Omega_1 \triangleq \{A \cap \Omega_1 : A \in \mathcal{F}\}.$$

 \mathcal{F}_2 is called *a trace* of \mathcal{F} on Ω_1 . Show $\mathcal{F}_1 = \mathcal{F}_2$. (*Hint:* show that collection $\mathcal{G} = \{E \in \mathcal{F} : E \cap \Omega_1 \in \mathcal{F}_1\}$ is a monotone class.)

Solution: For a collection \mathcal{D} and a space Ω let $\alpha_{\Omega}(\mathcal{D})$ denote the smallest algebra of sets in Ω containing \mathcal{D} .

Claim: $\alpha_{\Omega_1}(\mathcal{C} \cap \Omega_1) = \alpha_{\Omega}(\mathcal{C}) \cap \Omega_1.$

By definition $\mathcal{C} \subset \alpha_{\Omega}(\mathcal{C})$ and therefore, $\mathcal{C} \cap \Omega_1 \subset \alpha_{\Omega}(\mathcal{C}) \cap \Omega_1$. The empty set $\phi = \phi \cap \Omega_1 \in \alpha_{\Omega}(\mathcal{C}) \cap \Omega_1$, as $\alpha_{\Omega}(\mathcal{C})$ is an algebra. Let $E \cap \Omega_1 \in \alpha_{\Omega}(\mathcal{C}) \cap \Omega_1$, then $(E \cap \Omega_1)^c = \Omega_1 \setminus (E \cap \Omega_1) = E^c \cap \Omega_1 \in \alpha_{\Omega}(\mathcal{C}) \cap \Omega_1$, as $E \in \alpha_{\Omega}(\mathcal{C})$ and $\alpha_{\Omega}(\mathcal{C})$ is an algebra. Let $E_1 \cap \Omega_1, E_2 \cap \Omega_1 \in \alpha_{\Omega}(\mathcal{C}) \cap \Omega_1$, then $(E_1 \cap \Omega_1) \cap (E_2 \cap \Omega_2) = (E_1 \cap E_2) \cap \Omega_1 \in \alpha_{\Omega}(\mathcal{C}) \cap \Omega_1$, as $E_1, E_2 \in \alpha_{\Omega}(\mathcal{C})$ and $\alpha_{\Omega}(\mathcal{C})$ is an algebra. Hence $\alpha_{\Omega}(\mathcal{C})$ is an algebra of sets in Ω_1 containing $\mathcal{C} \cap \Omega_1$, and by minimality of $\alpha_{\Omega_1}(\mathcal{C} \cap \Omega_1), \alpha_{\Omega_1}(\mathcal{C} \cap \Omega_1) \subset \alpha_{\Omega}(\mathcal{C}) \cap \Omega_1$.

Consider the set

$$\mathcal{D}_1 = \{ E \in 2^{\Omega} \mid E \cap \Omega_1 \in \alpha_{\Omega_1}(\mathcal{C} \cap \Omega_1) \}.$$

The collection $\mathcal{C} \subset \mathcal{D}_1$, as $\mathcal{C} \cap \Omega_1 \subset \alpha_{\Omega_1}(\mathcal{C} \cap \Omega_1)$ by definition. The empty set $\phi \cap \Omega_1 = \phi \in \alpha_{\Omega_1}(\mathcal{C} \cap \Omega_1)$, as α_{Ω_1} is an algebra. Thus $\phi \in \mathcal{D}_1$. Let $E \in \mathcal{D}_1$, then $E^c \cap \Omega_1 = \Omega_1 \setminus (E \cap \Omega_1) = (E \cap \Omega_1)^c \in \alpha_{\Omega_1}(\mathcal{C} \cap \Omega_1)$, as $E \cap \Omega_1 \in \alpha_{\Omega_1}(\mathcal{C} \cap \Omega_1)$ and $\alpha_{\Omega_1}(\mathcal{C} \cap \Omega_1)$ is an algebra. Thus \mathcal{D}_1 is closed under complements. Let $E_1, E_2 \in \mathcal{D}_1$, then $(E_1 \cap E_2) \cap \Omega_1 = (E_1 \cap \Omega_1) \cap (E_2 \cap \Omega_1) \in$ $\alpha_{\Omega_1}(\mathcal{C} \cap \Omega_1)$, as $E_1 \cap \Omega_1, E_2 \cap \Omega_1 \in \alpha_{\Omega_1}(\mathcal{C} \cap \Omega_1)$ and $\alpha_{\Omega_1}(\mathcal{C} \cap \Omega_1)$ is an algebra. Thus \mathcal{D}_1 is closed under intersections and \mathcal{D}_1 is an algebra of sets in Ω containing \mathcal{C} . Therefore, by minimality $\alpha_{\Omega}(\mathcal{C}) \subset \mathcal{D}_1$. By definition of \mathcal{D}_1 , $\alpha_{\Omega}(\mathcal{C}) \cap \Omega_1 \subset \alpha_{\Omega_1}(\mathcal{C} \cap \Omega_1)$, which proves the claim.

Claim: For a collection of sets \mathcal{D} and a space Ω , $\sigma_{\Omega}(\mathcal{D}) = \sigma_{\Omega}(\alpha_{\Omega}(\mathcal{D}))$.

By definition $\mathcal{D} \subset \alpha_{\Omega}(\mathcal{D}) \subset \sigma_{\Omega}(\mathcal{D})$, and by monotonicity of the $\sigma_{\Omega}(\cdot)$ operator, see recitation 2, $\sigma_{\Omega}(\mathcal{D}) \subset \sigma_{\Omega}(\alpha_{\Omega}(\mathcal{D})) \subset \sigma_{\Omega}(\sigma_{\Omega}(\mathcal{D})) = \sigma_{\Omega}(\mathcal{D})$. Thus $\sigma_{\Omega}(\mathcal{D}) = \sigma_{\Omega}(\alpha_{\Omega}(\mathcal{D}))$.

Combining the results of the two claims $\sigma_{\Omega_1}(\alpha_{\Omega}(\mathcal{C}) \cap \Omega_1) = \sigma_{\Omega_1}(\alpha_{\Omega_1}(\mathcal{C} \cap \Omega_1)) = \sigma_{\Omega_1}(\mathcal{C} \cap \Omega_1)$ and $\sigma_{\Omega}(\alpha_{\Omega}(\mathcal{C})) = \sigma_{\Omega}(\mathcal{C})$. Therefore, it suffices to show that $\sigma_{\Omega_1}(\alpha_{\Omega}(\mathcal{C}) \cap \Omega_1) = \sigma_{\Omega}(\alpha_{\Omega}(\mathcal{C})) \cap \Omega_1$. By the monotone class theorem, as $\alpha_{\Omega}(\mathcal{C})$ is an algebra, this holds if and only if $\mu_{\Omega_1}(\alpha_{\Omega}(\mathcal{C}) \cap \Omega_1) = \mu_{\Omega}(\alpha_{\Omega}(\mathcal{C})) \cap \Omega_1$. Let $\mathcal{A} := \alpha_{\Omega}(\mathcal{C})$.

By definition $\mathcal{A} \subset \mu_{\Omega}(\mathcal{A})$ and therefore, $\mathcal{A} \cap \Omega_1 \subset \mu_{\Omega}(\mathcal{A}) \cap \Omega_1$. Let $\{E_n \cap \Omega_1\} \in \mu_{\Omega}(\mathcal{A}) \cap \Omega_1$, with $(E_n \cap \Omega_1) \subset (E_{n+1} \cap \Omega_1)$. The sequence $\{E_n\}$ may not be monotone however, $E'_n = \bigcup_{k=1}^n E_n$ is monotonic and by the monotonicity of $\{E_n \cap \Omega_1\}, (\bigcup_{k=1}^n E_k) \cap \Omega_1 = E_n \cap \Omega_1$, i.e. $E_n \cap \Omega_1 = E'_n \cap \Omega_1$. Since $\mu_{\Omega}(\mathcal{A})$ is a monotone class $E'_n \nearrow E \in \mu_{\Omega}(\mathcal{A})$. Therefore, $E_n \cap \Omega_1 \nearrow E \cap \Omega_1 \in \mu_{\Omega}(\mathcal{A}) \cap \Omega_1$, this follows since $\bigcup_{n=1}^{\infty} (E_n \cap \Omega_1) = (\bigcup_{n=1}^{\infty} E_n) \cap \Omega_1 = E \cap \Omega_1$. Similarly, let $\{E_n \cap \Omega_1\} \in \mu_{\Omega}(\mathcal{A}) \cap \Omega_1$, with $(E_n \cap \Omega_1) \supset (E_{n+1} \cap \Omega_1)$, and, by the construction given for increasing sets, WLOG $E_n \supset E_{n+1}$. Since $\mu_{\Omega}(\mathcal{A}) \cap \Omega_1$, this follows since $\bigcap_{n=1}^{\infty} (E_n \cap \Omega_1) = (\bigcap_{n=1}^{\infty} E_n) \cap \Omega_1 \in \mu_{\Omega}(\mathcal{A}) \cap \Omega_1$, this follows since $\bigcap_{n=1}^{\infty} (E_n \cap \Omega_1) = (\bigcap_{n=1}^{\infty} E_n) \cap \Omega_1 = E \cap \Omega_1$. Hence $\mu_{\Omega}(\mathcal{A}) \cap \Omega_1$ is a monotone class of sets in Ω_1 containing $\mathcal{A} \cap \Omega_1$ and by minimality $\mu_{\Omega_1}(\mathcal{A} \cap \Omega_1) \subset \mu_{\Omega}(\mathcal{A}) \cap \Omega_1$.

Consider the set

$$\mathcal{D}_2 = \{ E \in 2^{\Omega} \mid E \cap \Omega_1 \in \mu_{\Omega_1}(\mathcal{A} \cap \Omega_1) \}.$$

The algebra $\mathcal{A} \subset \mathcal{D}_2$, as $\mathcal{A} \cap \Omega_1 \subset \alpha_{\Omega_1}(\mathcal{A} \cap \Omega_1)$ by definition. Let $\{E_n\}$ be an increasing sequence of sets in \mathcal{D}_2 , then $\{E_n \cap \Omega_1\}$ is an increasing sequence of sets in $\mu_{\Omega_1}(\mathcal{A} \cap \Omega_1)$, and as $\mu_{\Omega_1}(\mathcal{A} \cap \Omega_1)$ is a monotone class, $(E_n \cap \Omega_1) \nearrow (E \cap \Omega_1) \in \mu_{\Omega_1}(\mathcal{A} \cap \Omega_1)$. Therefore, $E_n \nearrow E \in \mathcal{D}_1$. A similar argument holds for a decreasing sequence of sets. Hence \mathcal{D}_2 is a monotone class of sets in Ω containing \mathcal{A} . Therefore, by minimality $\mu_{\Omega}(\mathcal{A}) \subset \mathcal{D}_2$. By definition of \mathcal{D}_2 , $\mu_{\Omega}(\mathcal{A}) \cap \Omega_1 \subset \mu_{\Omega_1}(\mathcal{A} \cap \Omega_1)$.

Hence $\mu_{\Omega}(\mathcal{A}) \cap \Omega_1 = \mu_{\Omega_1}(\mathcal{A} \cap \Omega_1)$, and thusly, $\sigma_{\Omega}(\mathcal{C}) \cap \Omega_1 = \sigma_{\Omega_1}(\mathcal{C} \cap \Omega_1)$ as desired.

Exercise 8. [Optional, not to be graded] Let $\Omega = [0, 1)$ and let \mathcal{F}_0 be the collection of finite unions $\bigcup_{i=1}^{N} [a_i, b_i)$ for $a_i, b_i \in [0, 1]$. For any $A \in \mathcal{F}_0$, let $\mathbb{P}[A] = 1$ if one of the $b_i = 1$, and $\mathbb{P}[A] = 0$ otherwise. In Lectures we showed that \mathcal{F}_0 is an algebra but not a σ -algebra.

(a) Show that \mathbb{P} is a non-negative (finitely) additive set-function on \mathcal{F}_0 .

(b) Show that \mathbb{P} is not countably additive on \mathcal{F}_0 .

Solution:

(a) For all $A \in \mathcal{F}_0$, $\mathbb{P}[A] \in \{0, 1\}$. Thus \mathbb{P} is non-negative.

Let $A_1, A_2 \in \mathcal{F}_0$ be disjoint. Then $A_1 = \bigcup_{i=1}^{N_1} [a_i^{(1)}, b_i^{(1)})$ and $A_2 = \bigcup_{j=1}^{N_2} [a_j^{(2)}, b_j^{(2)})$, where WLOG the intervals are ordered and non are empty $a_1^{(m)} < b_1^{(m)} < \ldots < a_{N_m}^{(m)} < b_{N_m}^{(m)}$. As $A_1 \cap A_2 = \emptyset$, $A_1 \cup A_2 = \bigcup_{k=1}^{N_1+N_2} [a_k^{(3)}, b_k^{(3)})$, where $a_k^{(3)} \in \{a_i^{(1)}, a_j^{(2)}\}$ and $b_k^{(3)} \in \{b_i^{(1)}, b_j^{(2)}\}$ are the results of interleaving the two collections of intervals and are again WLOG ordered. By construction $\mathbb{P}[A_1] = 1$ if and only if $b_{N_1}^{(1)} = 1$, $\mathbb{P}[A_2] = 1$ if and only if $b_{N_1+N_2}^{(2)} = 1$ and $\mathbb{P}[A_1 \cup A_2] = 1$ if and only if $b_{N_1+N_2}^{(3)} = 1$. Suppose $b_{N_1+N_2}^{(3)} = 1$ and WLOG assume $b_{N_1}^{(1)} = 1$, then, as A_1 and A_2 are disjoint, $b_{N_2}^{(2)} \neq 1$

$$\mathbb{P}(A_1 \cup A_2) = 1 = 1 + 0 = \mathbb{P}(A_1) + \mathbb{P}(A_2).$$

Suppose $b_{N_1+N_2}^{(3)} \neq 1$ then neither $b_{N_1}^{(1)} = 1$ nor $b_{N_2}^{(2)} = 1$

 $\mathbb{P}(A_1 \cup A_2) = 0 = 0 + 0 = \mathbb{P}(A_1) + \mathbb{P}(A_2).$

(b) Let $A_n = [0, 1 - \frac{1}{n})$. Then, for all $n, \mathbb{P}(A_n) = 0$. Moreover, $A_n \subset A_{n+1}$ and $\lim_{n\to\infty} A_n = \bigcup_{n=1}^{\infty} A_n = [0, 1) \in \mathcal{F}_0$. Hence, by continuity of probability,

$$\lim_{n \to \infty} \mathbb{P}(A_n) = \lim_{n \to \infty} 0 = 0 \neq 1 = \mathbb{P}\left([0, 1)\right) = \mathbb{P} \quad \lim_{n \to \infty} A_n \quad .$$

and \mathbb{P} is not countably additive.

MIT OpenCourseWare <u>https://ocw.mit.edu</u>

6.436J / 15.085J Fundamentals of Probability Fall 2018

For information about citing these materials or our Terms of Use, visit <u>https://ocw.mit.edu/terms</u>