MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.436J/15.085] Fall 2018
Problem Set 2

Readings:
Notes from Lecture 2 and 3.

Supplementary readings:
[GS], Sections 1.4-1.7.
[C], Chapter 1.3

[W], Chapter 1.

Exercise 1. Consider a probabilistic experiment involving infinitely many coin
tosses, and let 2 = {0, 1}°° (think of 0 and 1 corresponding to heads and tails,
respectively). A typical element w € € is of the form w = (wy,wo,...), with
w; € {0, 1}.

As in the notes for Lecture 2, we define F,, as the o-field consisting of all
sets whose occurrence or nonoccurrence can be determined by looking at the
result of the first n coin flips. The o-field F for this model is defined as the
smallest o-field that contains all of the F,,.

(a) Consider the event H consisting of all w with the following property.
There exists some time ¢ at which the number of ones so far is greater
than or equal to the number of zeros so far. Show that H € F.

(b) (Harder) Consider the set A of all w for which the limit

n
1
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n—00 N 4
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exists. Show that A € F.

Note: This is important because, once we have also chosen a probability
measure, it allows us to make statements about the probability that this
limit (the long-term fraction of heads) exists.

Hint: The event A, “the limit defined above exists and is equal to x”
belongs to F. However, this does not imply that | J,, A, € F (why?). You
need to find some other way of describing the event A in terms of unions,
complements, etc., of events in the F,,. For example, use the fact that a
sequence converges if and only if it is a “Cauchy sequence.”

Solution:



(@) Let S, = {(w1,w2,...)| [ wi > [n/2]},ie., Sy is the set of se-
quences where there are at least as many ones, in the first n entries as
there are zeroes. Then,

o0
H= U S,,.
n=1

(b) Let
1 n
an = E _E - Ws.

According to Cauchy criterion, the sequence {a,,} converges if and only
if for any positive integer r, there exists some positive integer N such that
foranyn > m > N,

lan — am| < 1/r.

For a pair of positive integers n > m, we define
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Thus,
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Exercise 2. Suppose that the events A,, satisfy P(4,,) — 0and .7, P(AS N
Ap+1) < 0o. Show that P(A,, i.0.) = 0. Note: A, i.o0., stands for “A,, occurs
infinitely often”, or “infinitely many of the A,, occur”, or justlim sup,, A,,. Hint:
Borel-Cantelli.

Solution: Define the set

A =limsup A4, = ﬁ G A,

n—00
n=1m=n

We wish to show P(A) = 0. Now, A C USS_, Ay, for all m, and by monotonic-
ity of the measure, P(A) < P(UZ_,, Ay,), for all n. In addition,

UAm = AU (Anpi \An) U (Apg2 \ Apgr) U+

= A, U(An i NAL) U (Ao NAL U -



Therefore, by the union bound,

P(4) < P ( fj Am>

P(A,) + i P(Apyr N AS).

m=n

IN

This holds for all n, and therefore it holds in the limit as n goes to infin-
ity. But the limit of the final expression is zero, since P(A4,) — 0, and since
;o::l P(A% N An+1) < Q.

Exercise 3. Consider one of our standard probability spaces (2, F,P), with
Q = (0,1], F — Borel and IP — the Lebesgue measure. To every element w € 2
we assign its infinite decimal representation. We disallow decimal representa-
tions that end with an infinite string of nines. Under this condition, every number
has a unique decimal representation.

(a) Let A be the set of points in (0, 1] whose decimal representation contains at
least one digit equal to 9. Find P[A].

(b) Let B be the set of points that have infinitely many 9’s in the decimal repre-
sentation. Find P[B]. (Hint: Borel-Cantelli).

Solution: Part (a).

We will find the Lebesgue measure of A€, the set of points in (0, 1] whose
decimal representation contains no digit equal to 9. We can scale that set (by
multiplying it with a real number) to obtain the set

Ag = iAC,
10
which is the set of points in (0, 1] whose decimal representation starts with a 0,
and contains no digit equal to 9 afterwards. Since the set A is just the same as
A¢ but scaled down by a factor of 10, we have that P(4q) = 75P(A°). Further-
more, we can do translations of that set to obtain analogous sets starting with
different digits. In particular, let us define

k
Ap=—+A
ST



as the set of points in (0, 1] whose decimal representation starts with a k, and
has no digit equal to 9 afterwards. Note that these sets are all disjoint, and that
we have

8
A¢ = U Ay
k=0

Then, using the finite additivity property of measures, and the fact that the
Lebesgue measure is invariant by translations, we obtain

This equality can only be true if P(A°) = 0, and thus P(A) = 1.
Part (b). Let B; be the event that there is a 9 in the i-th position of the
expansion. These events are independent with P(B;) = 1/10, for all ¢ > 1.

Thus, we have
o

> P(B) = .

i=1
Then, by Borel-Cantelli, we have

P(B) = P({B; i.0.}) = 1.

Exercise 4. Consider a probability space (€2, F,P), and let A be an event (ele-
ment of F). Let G be collection of all events that are independent from A. Show
that G need not be a g-algebra.

Solution: G need not be a o-algebra. For example, let X,Y be i.i.d., with
P(X =1) =P(X =0) = 1/2. Let Z be the mod two sum of X and Y, so
that if X = Y, then Z = 0, and if X # Y, then Z = 1. Then pairwise, these
three random variables are independent. Let A be the event {Z = 1}. Now, the
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events B = {X = 1}, By = {Y = 1} are both independent of A. However,
By N By is not independent of A.

Exercise 5. Let Ay, Ao, ... and B be events.
(a) Suppose that A, \, A,ie. Ay D Apyiand A = NP2, Ag. Assume B is
independent of Aj. Show that B is independent of A.

(b) Suppose that A is independent of B and also that As is independent of
B. Is it true that A1 N Ag is independent of B? Prove or give a counterex-
ample.

Solution:

(a) The sequence of events Ax N B is decreasing and converges to the event
AN B. [To see this, note that (Ng>1A;) N B = Ng>1 (Ax N B).] Using
the continuity of probability measures in the first and last equalities below,
and independence in the middle equality, we have

(AN B) = lim P(4, 1 B) = lim P(A,)P(B) = P(A)P(B).

(b) Consider two independent and fair coin tosses and let A; be the event
that the ¢th toss results in heads. Let B be the event that both tosses give
the same result. It is easily checked that P(4; N B) = P{HH}) =
1/4 = P(A4;)P(B), so that pairwise independence holds. On the other
hand, P(B | A; N A2) = 1 # P(B). Thus, A; N Ay and B are not
independent.

Exercise 6. Let ({2, F,P) be a probability space. Show that function

d(A, B) £ P[AAB]
satisfies the triangle inequality (i.e. d(A,B) < d(A,C) + d(C, B) for any
A, B,C).

Fun fact: Under this pseudo-metric any algebra is dense in the o-algebra it
generates. Thus, any event in a complicated o-algebra (such as Borel) can be
approximated arbitrarily well by events in a simple algebra (like finite unions of
[a,b)).

Solution: The symmetric difference is AAB = (A\B) U (B\A)
AAB = (A\B) U (B\A)
=(ANB°) U (BN A9
= (ANB°NC)U(ANB°NC)U(BNA°NC)U (BN A°NCY)
C (C\B)U (A\C) U (C\A) U (B\C)
= (AAC)U (CAB).



Hence, by the union bound,
P(AAB) < P(AAC) +P(CAB).

Exercise 7. [Optional, not to be graded] Let )1 C (2 and let C be some collec-
tion of subsets of €2. Let

61=Cﬂ91é{Aﬂ91:A€C}

and denote by F; (F) the minimal o-algebra on 21 (£2) generated by C; (C).
Also define
fzzfﬂglé{AﬂgliAE.F}.

F> is called a trace of F on £1. Show F; = Fu. (Hint: show that collection
G={F € F:ENQ € Fi}isamonotone class.)

Solution: For a collection D and a space 2 let ag(D) denote the smallest al-
gebra of sets in {2 containing D.

Claim: ag, (CN Q) = aq(C) N Q.

By definition C C aq(C) and therefore, CNQ; C aq(C)NE2. The empty set
d = N € aq(C)NQ, as ag(C) is an algebra. Let ENQy € an(C)NQy, then
(ENQ)=U\(ENQ) = BNy € aq(C)NQy,as E € ag(C) and an(C)
is an algebra. Let E1 Ny, EaNQy € aq(C)NQy, then (E1NQ)N(E2NQ) =
(E1NE2) N € ag(C) Ny, as By, Ey € ag(C) and aq(C) is an algebra.
Hence aq(C) is an algebra of sets in €27 containing C N €21, and by minimality
of ag, (CNQ), ag, (CNQ) C aq(C) N ;.

Consider the set

D ={Ec2? | ENQ €aq, (N}

The collection C C Dy, as C N2 C ag, (C N Q) by definition. The empty
set N Q= ¢ € ag,(CNQ), as agq, is an algebra. Thus ¢ € D;. Let
E € Dy, then E€NQ; = Ql\(E N Ql) = (E N Ql)c € agl(C N Ql), as
ENy € ag,(CNQy) and agq, (CN Q) is an algebra. Thus D; is closed under
complements. Let By, Es € Dy, then (E1NEy)NQ = (E1NQ)N(E2NQ) €
ag, (CNQy),as E1NQ L, EaNQy € ag, (CN Q) and ag, (CN Q) is an al-
gebra. Thus D; is closed under intersections and D; is an algebra of sets in
Q containing C. Therefore, by minimality ag(C) C D;. By definition of D,
aq(C) N Q1 C ag, (CNQ), which proves the claim.

Claim: For a collection of sets D and a space €2, 0o (D) = oq(aq(D)).



By definition D C aqn(D) C oq(D), and by monotonicity of the oq(+) op-
erator, see recitation 2, oo (D) C oq(aa(D)) C ca(ca(D)) = cq(D). Thus
oq(D) = oa(an(D)).

Combining the results of the two claims o, (aq(C) N Q1) = oq,(aq,(CN
1)) = 0q,(CN Q) and oq(aq(C)) = ocq(C). Therefore, it suffices to
show that o, (aq(C) N Q1) = oga(aa(C)) N 2. By the monotone class the-
orem, as aq(C) is an algebra, this holds if and only if uqo, (aq(C) N Q) =
po(aa(C)) Ny, Let A := aq(C).

By definition A C puq(A) and therefore, A N Qy C pa(A) N Q. Let
{E, N} € pa(A) NQy, with (B, N Q1) C (Eyy1 N Q). The sequence
{E,,} may not be monotone however, E;, = U}_, E,, is monotonic and by the
monotonicity of { E,NQ4 }, (UR_ Ex)N = E,NQy,ie. E,NQ = E;,NQ;.
Since pq(A) is a monotone class E/, ' E € pq(A). Therefore, E, Ny
ENQ € pa(A)NQy, this follows since |- | (E,NQ) = (U2 En)NQ =
ENQ;. Similarly, let { E,NQ1} € pa(A)NQy, with (E,NQ1) D (Epe1Ny),
and, by the construction given for increasing sets, WLOG F,, D E, 1. Since
ua(A) is a monotone class E,, \, E € uq(A). Therefore, £,y \, ENQy €
pa(A) NQy, this follows since  »2(E, NQ) = ( 2, E,)NQ = ENQ.
Hence pq(A) N £ is a monotone class of sets in {21 containing .4 N 2 and by
minimality po, (AN Q) C ua(A) N Q.

Consider the set

Dy={Ec2? | ENQ € pg, (AN)}.

The algebra A C Da, as ANy C agq, (AN Q1) by definition. Let { £}, } be an
increasing sequence of sets in Do, then { E,, N 24} is an increasing sequence of
sets in pq, (AN y), and as pg, (AN €Qy) is a monotone class, (E, N Q) N
(EN) € po, (AN Q). Therefore, E, , E € D;. A similar argument
holds for a decreasing sequence of sets. Hence D5 is a monotone class of sets in
() containing A. Therefore, by minimality p(A) C Da. By definition of Ds,
MQ(A) N C HQy (.A N Ql).

Hence po(A)NQ = pg, (ANQ,), and thusly, 0o (C) N2 = og, (CNQy)
as desired.

Exercise 8. [Optional, not to be graded] Let Q = [0,1) and let Fy be the
collection of finite unions UY_;[a;, b;) for a;,b; € [0,1]. For any A € Fy, let
P[A] = 1 if one of the b; = 1, and P[A] = 0 otherwise. In Lectures we showed
that Fo is an algebra but not a o-algebra.

(a) Show that P is a non-negative (finitely) additive set-function on Fg.



(b) Show that IP is not countably additive on .

Solution:

(a)

(b)

For all A € Fy, P[A] € {0, 1}. Thus P is non-negative.
Let A, Ay € Fp be disjoint. Then A; = [N [a!V, b)) and 4, =

i Y%

Uévjl [a§-2), b§2)), where WLOG the intervals are ordered and non are empty

o™ < bM< < a < by As AN Ay = 0, AU A =
,]f:li“NQ [a,(cg), b,(f)), where a](cg) € {agl), a§2)} and b,(f) € {bgl), b§-2)} are the

results of interleaving the two collections of intervals and are again WLOG

ordered. By construction P[A;] = 1 if and only if b%l) =1, P[As) = 1

if and only if b;) = 1 and P[A; U A] = 1 if and only if b5, . = L.

Moreover, bg{,? 4N, = Lif and only if either bg\l,f =1lor bg?,g = 1. Suppose

bg{? AN, = 1 and WLOG assume bg\lh) = 1, then, as A; and As are disjoint,
2
b, # 1

P(AlLJAQ):1:1+0:P(A1)+P(A2)

Suppose bg\gg 4N, 7 1 then neither bg\l,z = 1 nor b% =1

Let A, =[0,1 — %) Then, for all n, P (A,,) = 0. Moreover, A,, C A,+1

and lim, o A, = Uro; An = [0,1) € Fo. Hence, by continuity of
probability,

lim P(An):nlgngoOzo#lzP([O,l)):IP’ nh_)rgoAn ,

n—0o0

and PP is not countably additive.
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