MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.436J/15.085] Fall 2018
Problem Set 1

Readings:
(a) Notes from Lecture 1.
(b) Handout on background material on sets and real analysis (Recitation 1).

Supplementary readings:
[C], Sections 1.1-1.4.
[GS], Sections 1.1-1.3.
[W], Sections 1.0-1.5,1.9.

Exercise 1.

(a) Let N be the set of positive integers. A function f : N — {0, 1} is said to be
periodic if there exists some N such that f(n + N) = f(n), forall n € N.
Show that the set of periodic functions is countable.

(b) Does the result from part (a) remain valid if we consider rational-valued
periodic functions f : N — Q?

Solution:

(a) For a given positive integer IV, let Ay denote the set of periodic functions
with a period of N. For a given N, since the sequence, f(1),---, f(N),
actually defines a periodic function in Ay, we have that each Ay contains

2N elements. For example, for N = 2, there are four functions in the set
A22
f(Of(2)f@3)f(4)---=0000---; 1111---; 0101---; 1010--- .

The set of periodic functions from N to {0, 1}, A, can be written as,

o0
A= Axn.
N=1
Since the union of countably many finite sets is countable, we conclude that

the set of periodic functions from N to {0, 1} is countable.

(b) Still, for a given positive integer N, let An denote the set of periodic func-
tions with a period V. For a given NV, since the sequence, f(1),---, f(N),



actually defines a periodic function in Ay, we conclude that Ay has the
same cardinality as QY (the Cartesian product of N sets of rational num-
bers). Since Q is countable, and the Cartesian product of finitely many
countable sets is countable, we know that A is countable, for any given N.
Since the set of periodic functions from N to Q is the union of Ay, As,-- -,

it is countable, because the union of countably many countable sets is count-
able.

Exercise 2. Let {x,} and {y,} be real sequences that converge to x and ¥,
respectively. Provide a formal proof of the fact that x,, + y,, converges to x + y.

Solution: Fix some € > 0. Let n; be such that |z, — x| < €/2, for all n > ny.
Let ng be such that |y, — y| < €/2, for all n > ng. Let ng = max{ny,na}.
Then, for all n > ng, we have

€
|($n+yn)—(:v+y)|élxn—x|+|yn—y|§§+ =¢,

€
2
which proves the desired result.

Exercise 3. We are given a function f : A x B — R, where A and B are
nonempty sets.

(a) Assuming that the sets A and B are finite, show that

. o '
max min f (z,y) < minmax f (z,y)

(b) For general nonempty sets (not necessarily finite), show that

sup inf f(x,y) < inf sup f(z,y).
weAyer( y) yeBzeAf( y)

Solution:

(a) The proof rests on the application of the following simple fact: if h(z) <
g(z) for all z in some finite set Z, then

in 7(z) < mi 1
min h(z) < min g(z) (1
h(z) < . 2
max h(z) < max g(z) 2)

Observe that for all x, v,

f(z,y) < max f(z,y),
z€A

2



(b)

and Eq. (1) implies that for each x,

min f(x < min ma x
yer( 2 Y) min max f(z,y)-

Now applying Eq. (2), let’s take a maximum of both sides with respect to
x € A. Since the right-hand side is a number, it remains unchanged:

max min xr < min maX xr
r€A yeEB f( y) yeEB z€A f( y)

which is what we needed to show.

Along the same lines, we have the fact that if h(z) < g(z) forall z € Z,

inf h(z) < inf g(2) 3)
z2€Z z2€Z

sup h(z) < sup g(2). 4)
z€Z z2€Z

These follow immediately from the definitions of sup and inf.

As before, we begin with

f(z,y) <sup f(z,y),
T€A

for all z,y. By Eq. (3), for each z,

inf f(x,y) < inf sup f(z,y),
yeB YEB zcA

and using Eq. (4),

sup inf f(z,y) < 1nf sup flx,y).
z€A YEB IS

Exercise 4. A probabilistic experiment involves an infinite sequence of trials.
Fork =1,2,...,let Ax be the event that the kth trial was a success. Write down
a set-theoretic expression that describes the following event:

B: For every k there exists an £ such that trials k¢ and k¢ were both successes.

Note: A “set theoretic expression” is an expression like ;<5 (< f Ak+e-

Solution: B = (72, Up2; (Ake N Apg2).



Exercise 5. Let f,, f,¢g : [0,1] — [0,1] and a,b,c,d € [0,1]. Derive the
following set theoretic expressions:

(a) Show that

{z €0.1) |sup folw) <a} = {z €[0.1] ]| fulz) < a},

n

and use this to express {z € [0, 1] | sup,, fn(x) < a} as a countable combi-
nation (countable unions, countable intersections and complements) of sets
of the form {x € [0,1] | f,.(z) < b}.

(b) Express {z € [0,1] | f(z) > g(z)} as a countable combination of sets of
the form {z € [0,1] | f(z) > ¢} and {z € [0,1] | g(x) < d}.

(c) Express {x € [0,1] | limsup,, fn(x) < ¢} as a countable combination of
sets of the form {z € [0,1] | fn(z) < c}.

(d) Express { € [0,1] | lim,, f,(x) exists} as a countable combination of sets
of the form {z € [0,1] | fn(z) < ¢}, {z € [0,1] | fu(x) > c}, etc. (Hint:
think of {z € [0, 1] | limsup,, fn(z) > liminf, f,(2)}).

Solution: First observe the following set relations

[0,¢) = U[O,C—%] [0,c] = [O,C—i—%)
n=1 n=1
e1]=Jle+11] [el]= (c—21].

n=1 n=1

All conversions between strict and non-strict inequalities following from these
relations and properties of the inverse image, i.e. homomorphism of arbitrary
set operations. We will use the shorthand notation

{f<a}:={x€|0,1]]| f(z) < a}.

(@) Letxz € (,{fn < a}. Then, f,(x) < afor all n = sup,, fn(z) < a, by
definition of sup as a is an upper bound for { f,,(z)}. Therefore, as x was

arbitrary,
o

{fn <a} C{sup fn <a}.

n=1



Let x € {sup, fn < a}. Then sup, fn(x) < a and for all n f,(x) <
sup,,(z) < a. Therefore, as x was arbitrary,

o0

{sup fn <a} C  {fn<a}
" 1

n=

Hence {sup,, fn < a} =(),{fn < a}. By De Morgan’s this relation also
implies

{sup f >a} = |J{fn > a}.
n n=1
Similar results hold for inf.

Let f = sup,, f». Using the above comment
{sup In < CL} = {f < CL}
n
= f7([0,a))

= Uf_l [O,CL—%]
k=1

= U{SUanﬁa—%}
k=1 "

:U {fnga—%

k=1n=1

(b) Using countability and density of the rationals

{(f>gt=UJ{f>anfag>g}
qeQ

=Jir>an{e=g

q€Q

= J{r=an{g>gh

q€Q



(©)

n—o0

{limsup f, < ¢} = {inf sup f < ¢}
"21k2n

o0

= {1nfsupfk<c+ }

m=1 k>n

oo o0

= U{Supfk<c—|- }
m=1n=1 k21
[ee) oo X

= UU{Squk<C+__ 7}
m=1n=1¢=1 k=n
o0 (o clNe oG o]

= UU {fr <c+ -3}

m=1n=1/¢=1k=n

(d)
{ 1i_{n fn exists} = {lim inf fn= lim 1 Sup fn}

= {hm 1nf fn < hm sup fpn}¢ (liminf f,,(x) <limsup f,(z))
n—00 n—00 n—r00

= U {hm mf fn<qglnig< hm 1 Sup fn} (part b)
q€Q
= {lirginf fn = q} U{limsup f, < q}.
7€Q n—0o0 n—o0

The sets {liminf,, o fr > ¢} and {limsup,,_, . fr < ¢} can be expressed
as countable combinations using part (c¢) and the fact that

—limsup f,(z) = — inf sup fi(z)

n—o00 n>1 k>n

= sup inf (- f.(2))

n21k2n

= liminf(—f,(z)),

n—o0

ie. {liminf, o0 fn > ¢} = {limsup,,_,o(—fn) < —q}. More specifi-
cally,

N [(ﬁ Gﬁﬁ{f@c—%%})U(ﬁ Gﬁﬁ{ﬁfswﬁ—%}

qeQ m=1n=1¢=1k=n m=1n=1¢=1k=n

)|



Using one of the later two expressions of pdit, we can drop one of the
outer intersections

N[(00AE=cn)o (A U0Am=es1-1)
q€Q n=1/4=1k=n m=1n=1/=1k=n .
or

N (ﬁ ijﬁ{fm:—%w}) (@@ﬁ{fﬁc——):-

qeQ m=1n=1/0=1k=n n=1/=1k=n

Exercise 6. Let {2 = N (the positive integers), and let Fy be the collection of
subsets of {2 that either have finite cardinality or their complement has finite
cardinality. For any A € Fy, let P(A) = 0 if A is finite, and P(A) = 1 if A is
finite.

(a) Show that Fy is a field but not a o-field.

(b) Show that PP is finitely additive on Fy; that is, if A, B € Fy, and A, B are
disjoint, then P(A U B) = P(A) + P(B).

(c) Show that PP is not countably additive on Fy; that is, construct a sequence of
disjoint sets A; € Fpsuchthat U°, A; € Foand P (U2, A;) # 2, P (A)).

(d) Construct a decreasing sequence of sets A; € Fy such that N72, A; = @ for
which lim;_, ., P(A;) # 0.

Solution:

(a) The empty set has zero cardinality, and therefore belongs to Fy. Further-
more, if A € Fy, then either A or A€ has finite cardinality. It follows that
either A° or (A°)€ has finite cardinality, so that A° € Fy.

Suppose that A, B € Fy. If both A and B are finite, then A U B is also
finite and belongs to Fy. Suppose now that at least one of A or B is infinite.
We have AU B = (A°N B¢)°. Since A° N B¢ is finite, it follows that
AU B € Fy. This shows that F is a field.

To see that Fy is not a o-field, note that {2n} € F for every n € N, but the
set ;2 ,{2n}, the set of even natural numbers, is not in F;.

(b) Let A, B € Fy be disjoint. If both A and B are finite, then P (AU B) =
0 =P(A) +P(B). Suppose that either A or B (or both) is infinite. Since A
and B are disjoint, we have A C B and B C A°. It follows that A and B
cannot both be infinite. Therefore, P(AU B) = 1 = P(A) + P(B), and P
is finitely additive.



(c) Note that {n} € Fy and J,5,{n} = Q. However, P({n}) = 0 while
P(€2) = 1, hence P is not countably additive.

(d) Let A, = {n,n +1,...}. Then (A,),>1 forms a decreasing sequence of
sets with (), A, = @. But P(4,,) = 1 for all n, hence lim,,_, P(4,) = 1.
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