
 
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

6.436J/15.085J Fall 2018 
Problem Set 1 

Readings:
(a) Notes from Lecture 1.
(b) Handout on background material on sets and real analysis (Recitation 1).

Supplementary readings:
[C], Sections 1.1-1.4.
[GS], Sections 1.1-1.3.
[W], Sections 1.0-1.5, 1.9. 

Exercise 1. 

(a) Let N be the set of positive integers. A function f : N → {0, 1} is said to be
periodic if there exists some N such that f(n+ N) =  f(n), for  all  n ∈ N.
Show that the set of periodic functions is countable.

(b) Does the result from part (a) remain valid if we consider rational-valued
periodic functions f : N → Q?

Solution: 

(a) For a given positive integer N , let  AN denote the set of periodic functions
with a period of N . For  a  given  N , since  the  sequence,  f(1), · · ·  , f(N),
actually defines a periodic function in AN , we  have  that  each  AN contains
2N elements. For example, for N = 2, there  are  four  functions  in  the  set
A2:

f(1)f(2)f(3)f(4) · · ·  = 0000  · · ·  ; 1111  · · ·  ; 0101  · · ·  ; 1010  · · ·  .

The set of periodic functions from N to {0, 1}, A, can  be  written  as,

∞ 
! 

A = AN . 
N=1 

Since the union of countably many finite sets is countable, we conclude that
the set of periodic functions from N to {0, 1} is countable. 

(b) Still, for a given positive integer N , let  AN denote the set of periodic func-
tions with a period N . For  a  given  N , since  the  sequence,  f(1), · · ·  , f(N),
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actually defines a periodic function in AN , we  conclude  that  AN has the 
same cardinality as QN (the Cartesian product of N sets of rational num-
bers). Since Q is countable, and the Cartesian product of finitely many 
countable sets is countable, we know that AN is countable, for any given N . 
Since the set of periodic functions from N to Q is the union of A1, A2, · · · ,
it is countable, because the union of countably many countable sets is count-
able. 

Exercise 2. Let {xn} and {yn} be real sequences that converge to x and y, 
respectively. Provide a formal proof of the fact that xn + yn converges to x + y. 

Solution: Fix some ϵ > 0. Let  n1 be such that |xn − x| < ϵ/2, for  all  n > n1. 
Let n2 be such that |yn − y| < ϵ/2, for  all  n > n2. Let  n0 = max{n1, n2}. 
Then, for all n > n0, we  have  

ϵ ϵ 
|(xn + yn) − (x + y)| ≤ |xn − x|+ |yn − y| ≤ + = ϵ, 
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which proves the desired result. 

Exercise 3. We are given a function f : A × B → R, where  A and B are 
nonempty sets. 

(a) Assuming that the sets A and B are finite, show that

max min f (x, y) ≤ min max f (x, y). 
x∈A y∈B y∈B x∈A 

(b) For general nonempty sets (not necessarily finite), show that

sup inf f (x, y) ≤ inf sup f (x, y). 
y∈B y∈B x∈A x∈A 

Solution: 

(a) The proof rests on the application of the following simple fact:  if  h(z) ≤
g(z) for all z in some finite set Z , then

min h(z) ≤ min g(z) 
z∈Z z∈Z 

(1) 

max h(z) ≤ max g(z). 
z∈Z z∈Z 

(2) 

Observe that for all x, y, 

f (x, y) ≤ max f (x, y), 
x∈A 
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and Eq. (1) implies that for each x, 

min f (x, y) ≤ min max f (x, y). 
y∈B y∈B x∈A 

Now applying Eq. (2), let’s take a maximum of both sides with respect to 
x ∈ A. Since  the  right-hand  side  is  a  number,  it  remains  unchanged: 

max min f (x, y) ≤ min max f (x, y), 
x∈A y∈B y∈B x∈A 

which is what we needed to show. 

(b) Along the same lines, we have the fact that if h(z) ≤ g(z) for all z ∈ Z ,

inf h(z) ≤ inf g(z) (3) 
z∈Z z∈Z 

sup h(z) ≤ sup g(z). (4) 
z∈Z z∈Z 

These follow immediately from the definitions of sup and inf . 
As before, we begin with 

f (x, y) ≤ sup f (x, y), 
x∈A 

for all x, y. By  Eq. (3),  for  each  x, 

inf f (x, y) ≤ inf sup f (x, y), 
y∈B y∈B x∈A 

and using Eq. (4), 

sup inf f (x, y) ≤ inf sup f (x, y). 
y∈B y∈B x∈A x∈A 

Exercise 4. A probabilistic  experiment  involves  an  infinite  sequence  of  trials. 
For k = 1, 2, . . ., let  Ak be the event that the kth trial was a success. Write down 
a set-theoretic  expression  that  describes  the  following  event: 

B: For  every  k there exists an ℓ such that trials kℓ and kℓ2 were both successes. 

# 
Note: A  “set  theoretic  expression”  is  an  expression  like

" 
Ak+ℓ. k>5 ℓ<k 

#∞ "∞Solution: B = (Akℓ ∩ Akℓ2 ). k=1 ℓ=1 
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Exercise 5. Let fn, f, g  : [0, 1] → [0, 1] and a, b, c, d ∈ [0, 1]. Derive  the  
following set theoretic expressions: 

(a) Show that 

{x ∈ [0, 1] | sup fn(x) ≤ a} = {x ∈ [0, 1] | fn(x) ≤ a}, 
n 

n 

and use this to express {x ∈ [0, 1] | sup fn(x) < a} as a countable combi-n 
nation (countable unions, countable intersections and complements) of sets
of the form {x ∈ [0, 1] | fn(x) ≤ b}. 

(b) Express {x ∈ [0, 1] | f(x) > g(x)} as a countable combination of sets of 
the form {x ∈ [0, 1] | f(x) > c} and {x ∈ [0, 1] | g(x) < d}. 

(c) Express {x ∈ [0, 1] | lim sup fn(x) ≤ c} as a countable combination of n 
sets of the form {x ∈ [0, 1] | fn(x) ≤ c}. 

(d) Express {x ∈ [0, 1] | limn fn(x) exists} as a countable combination of sets 
of the form {x ∈ [0, 1] | fn(x) < c}, {x ∈ [0, 1] | fn(x) > c}, etc.  (Hint:  
think of {x ∈ [0, 1] | lim sup fn(x) > lim infn fn(x)}). n 

Solution: First observe the following set relations 

∞ ∞ 
! 

[0, c) =  [0, c− 1 ] [0, c] =  [0, c + 1 ) n n 
n=1 n=1 
∞ ∞ 
! 

(c, 1] = [c+ 1 , 1] [c, 1] = (c− 1 , 1]. n n 
n=1 n=1 

All conversions between strict and non-strict inequalities following  from  these  
relations and properties of the inverse image, i.e. homomorphism of arbitrary 
set operations. We will use the shorthand notation 

{f < a} := {x ∈ [0, 1] | f(x) < a}. 

# 
(a) Let x ∈ {fn ≤ a}. Then,  fn(x) ≤ a for all n =⇒ sup fn(x) ≤ a, by  n n 

definition of sup as a is an upper bound for {fn(x)}. Therefore,  as  x was 
arbitrary, 

∞ 

{fn ≤ a} ⊂ {sup fn ≤ a}. 
n 

n=1 
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Let x ∈ {sup fn ≤ a}. Then  sup fn(x) ≤ a and for all n fn(x) ≤ n n 
sup (x) ≤ a. Therefore,  as  x was arbitrary, n 

∞ 

{sup fn ≤ a} ⊂ {fn ≤ a}. 
n 

n=1 

# 
Hence {sup fn ≤ a} = {fn ≤ a}. By  De  Morgan’s  this  relation  also  n n 
implies 

∞ 
! 

{sup fn > a} = {fn ≥ a}. 
n 

n=1 

Similar results hold for inf . 

Let f = sup  fn. Using  the  above  comment  n 

{sup fn < a} = {f < a} 
n 

= f−1([0, a)) 
∞ 
! 

f−1 = [0, a − 1 ] k 
k=1 
∞ 
! 

= {sup fn ≤ a− 1 } k 
n 

k=1 
∞ ∞ 
! 

= {fn ≤ a− 1 }. k 
k=1 n=1 

(b) Using countability and density of the rationals 
! 

{f > g} = {f > q} ∩ {q > g} 
q∈Q 
! 

= {f > q} ∩ {q ≥ g} 
q∈Q 
! 

= {f ≥ q} ∩ {q > g}. 
q∈Q 
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(c) 

{lim sup fn ≤ c} = { inf sup fk ≤ c} 
n≥1 n→∞ k≥n 
∞ 

1 = { inf sup fk < c+ } m n≥1 k≥n m=1 
∞ ∞ 
! 

1 = {sup fk < c+ } m 
k≥nm=1 n=1 

∞ ∞ ∞
! ! 

1 
ℓ

ℓ 

− 1 

− 1 

m=1 n=1 ℓ=1 k=n 

(d) 

{ lim fn exists} = {lim inf fn = lim  sup  fn} 
n→∞ n→∞ n→∞ 

= {lim inf fn < lim sup fn}
c (lim inf fn(x) ≤ lim sup fn(x)) 

n→∞ n→∞ n→∞ n→∞ 
⎛ ⎞c 
! 

= ⎝ {lim inf fn < q} ∩ {q < lim sup fn}⎠ (part b)
n→∞ n→∞ 

q∈Q 

= {lim inf fn ≥ q} ∪ {lim sup fn ≤ q}. 
n→∞ n→∞ 

q∈Q 

The sets {lim infn→∞ fn ≥ q} and {lim sup f ≤ q} can be expressed n→∞ n 

as countable combinations using part (c) and the fact that 

− lim sup fn(x) =  − inf sup fk(x)
n≥1 n→∞ k≥n 

= sup  inf (−fk(x)) 
k≥n n≥1 

= lim inf(−fn(x)), 
n→∞ 

i.e. {lim infn→∞ f ≥ q} = {lim sup (−f ) ≤ −q}. More  specifi-n n→∞ n 

cally,

{sup fk ≤ c+ } = m 
k≥nm=1 n=1 ℓ=1 

∞ ∞ ∞ ∞ 
! ! 

1 {fk ≤ c+ }. = m 
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∞
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∞
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Exercise 6. Let Ω = N (the positive integers), and let F0 be the collection of 
subsets of Ω that either have finite cardinality or their complement has finite 
cardinality. For any A ∈ F0, let  P(A) = 0 if A is finite, and P(A) = 1 if AC is 
finite. 

(a) Show that F0 is a field but not a σ-field.

(b) Show that P is finitely additive on F0; that is,  if  A, B ∈ F0, and  A, B are
disjoint, then P(A ∪ B) = P(A) + P(B).

(c) Show that P is not countably additive on F0; that is,  construct  a  sequence  of
∞ disjoint sets Ai ∈ F0 such that ∪∞ Ai ∈ F0 and P (∪∞ Ai) ≠ P (Ai). i=1 i=1 i=1 

(d) Construct a decreasing sequence of sets Ai ∈ F0 such that ∩∞
i=1Ai = Ø for

which limi→∞ P(Ai) = 0̸ . 

Solution: 

(a) The empty set has zero cardinality, and therefore belongs to  F0. Further-
more, if A ∈ F0, then  either  A or Ac has finite cardinality. It follows that
either Ac or (Ac)c has finite cardinality, so that Ac ∈ F0.
Suppose that A, B ∈ F0. If  both  A and B are finite, then A ∪ B is also
finite and belongs to F0. Suppose  now  that  at  least  one  of  A or B is infinite.
We have A ∪ B = (Ac ∩ Bc)c. Since  Ac ∩ Bc is finite, it follows that
A ∪ B ∈ F0. This  shows  that  F0 is a field.
To see that F0 is not a σ-field, note that {2n} ∈ F0 for every n ∈ N, but  the
set 
"∞ {2n}, the  set  of  even  natural  numbers,  is  not  in  F0. n=0 

(b) Let A, B ∈ F0 be disjoint. If both A and B are finite, then P (A ∪ B) =
0 = P(A) +P(B). Suppose  that  either  A or B (or both) is infinite. Since A
and B are disjoint, we have A ⊂ Bc and B ⊂ Ac. It  follows  that  A and B
cannot both be infinite. Therefore, P(A ∪ B) = 1 = P(A) + P(B), and  P
is finitely additive.
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Using one of the later two expressions of part(b), we can drop one of the
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∞
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∞
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" 
(c) Note that {n} ∈ F0 and {n} = Ω. However,  P({n}) = 0 while n≥1 

P(Ω) = 1, hence  P is not countably additive. 

(d) Let An = {n, n + 1, . . .}. Then  (An)n≥1 forms a decreasing sequence of
sets with 

# 
An = Ø. But P(An) = 1 for all n, hence  limn→∞ P(An) = 1.n 
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