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MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

6.436J/15.085J Fall 2018 
Problem Set 12 (OPTIONAL) 

Readings: 
Notes from Lectures 23-26. 
[Cinlar], Chapter V.1-V.4 
[Grimmett-Stirzaker], Chapter 6.1-6.6, Chapter 12.1-12.6 

Exercise 1. Consider two irreducible Markov chains K1 and K2 on Z+ whose 
only jumps are of the form n → {n − 1, n, n  + 1}. Suppose

K1(i, {i + 1}) ≥ K2(j, {j + 1}) i, j ≥ 0

and 
K1(i, {i − 1}) ≤ K2(i, {i − 1}) i ≥ 0.

Show that there exists a coupling such that Xn ≥ Yn a.s.. Conclude that if Y is

transient, then so is X. 

Solution: Start the two Markov chains in some arbitrary state i0. Evolve  Xn

according to K1 and Yn as follows. Suppose Xn = i. Let  

p−1 = K1(i, {i − 1}) p0 = K1(i, {i}) p1 = K1(i, {i + 1}),

q−1 = K2(i, {i − 1}) q0 = K2(i, {i}) q1 = K2(i, {i + 1}).

By assumption p1 ≥ q1 and p−1 ≤ q−1. There  are  two  cases  p0 ≥ q0 and p0 ≤
q0. Define  P(Xn+1) :=  (P(Xn+1 = i + 1), P(Xn+1 = i), P(Xn+1 = i − 1))
and P(Y n+1) :=  (P(Yn+1 = i + 1), P(Yn+1 = i), P(Yn+1 = i − 1)). Let

P(Y ) =  AP(X ) where the corresponding matrices for the two case are n+1 n+1 
respectively 

⎡ ⎤ ⎡ ⎤ 
q1 q10 0 0 0
p1 p1 

⎢ q0 ⎥ ⎢ q0−p0 ⎥ 0 0 1 0  
⎣ ⎦ ⎣ ⎦ . p0 p1
1− q1 1− q0 q

−1−p
−11 0 1p1 p0 p1

Exercise 2. Consider a Bernoulli process (Xn, n  ≥ 1). For  each  of  the  integer

valued random variables T below determine whether it is a stopping time or not. 
In case T is a stopping time describe the corresponding sequence of functions 
hn = hn(x1, . . . , xn) determining T . 
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(a) T is the first time n such that Xi = 2. Namely,  T = min{n :1≤i≤n 
Xi = 2}. If  T is indeed a stopping time describe the correspond-1≤i≤n 

ing sequence of functions hn. 

(b) T = max(10,min{n : Xi = 2}).1≤i≤n 

(c) T is the first time n such that Xi = Xi. 1≤i≤n n+1≤i≤2n 

(d) T is the first time n such that Xi = Xi. 1≤i≤n/2 n/2+1≤i≤n−1 

Solution: 

(a) Yes, it is a stopping time.

hn(x1, . . . , xn) =  (x1 + · · ·+ xn−1 < 2, x1 + · · · xn = 2).

(b) Yes, it is a stopping time. hn(x1, . . . , xn) =

(n = 10, x1 + · · ·+ x10 ≥ 2) + (x1 + · · ·+ xn−1 < 2, x1 + · · · xn = 2, n  >  10).

(c) No, it is not a stopping time because it depends on the future (entries in

n+ 1, . . . , 2n).

(d) Yes it is a stopping time.

⎛ ⎞ 
⌊k/2⌋ k−1 ⌊n/2⌋ n−1 

hn(x1, . . . , xn) =  ⎝ xi ≠ xi k < n− 1, xi = xi⎠

i=1 ⌊k/2⌋+1 i=1 ⌊n/2⌋+1 

Exercise 3. Let X1,X2,X3 be independent exponential random variables with 
mean 1. Let 

α = P(X1 > X2 +X3). 

(a) Find α, without  calculating  any  integrals.

(b) Find the probability that the largest of the three random variables X1,X2,X3 

is larger than the sum of the other two. [You can express your answer in
terms of the constant α from part (a).]

Solution: 
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(a) Consider two independent rate one Poisson processes, say A and B. Let

X2 be the time until the first arrival of A, let  X3 be the time between the

first and second arrival of A, and  let  X1 be the time of the first arrival of

B. Then  α is the probability that A has two arrivals before B. By  Poisson

splitting/merging, we can instead consider a single rate two Poisson  process,

where we assign arrivals to A or B i.i.d. with probability 1/2. Thus  α is
the probability that the first two arrivals of the merged process both go to A,

1 1 1 thus α = · 
2 = .

2 4 

(b) As the events {X1 > X2 +X3}, {X2 > X1 +X3}, and  {X3 > X1 +X2}
are disjoint, and there union is the event that the largest Xi is bigger than

the sum of the smaller three, we have

P({X1 > X2 +X3} ∪ {X2 > X1 +X3} ∪ {X3 > X1 +X2})
= P(X1 > X2 +X3) + P(X2 > X1 +X3) + P(X3 > X1 +X2) 

= 3P(X1 > X2 +X3) 

= 3α. 

where second equality follows by symmetry as the variables are i.i.d. 

Exercise 4. Fast and slow customers arrive at a 24 hour store according to inde-

pendent Poisson processes, each with rate 1 per minute. Fast customers stay in 
the bookstore for 1 minute, slow customers stay in the store for 2 minutes. 

(a) What is the PMF of the total number of customer arrivals during a one

minute interval?

(b) Find the variance of the number of customers in the store at 3  p.m.

(c) At 3 p.m., there is only one customer present in the store.

(i) What is the probability, β, that  the  customer  is  a  fast  one?

(ii) What is the PDF that this customer will depart before a new cus-

tomer arrives? [You may express your answer in terms of the con-

stant β from part (i). Also, you may leave your answer as a formula

involving integrals – you do not have to evaluate the integrals.]

Let Nt be the number of fast customer arrivals during [0, t]. 

(d) Does (N2t −Nt)/t converge in probability, as t → ∞? With  probability

1? If yes, to what? Outline a rigorous justification for your answers. You

can start with t integer-valued and then argue for t ∈ ℜ.
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(e) Find (approximately) a time k such that

P(Nk ≥ 100) ≈ 0.758.

Note that if Z is a standard normal random variable, then P(Z ≤ 0.7) =
0.758. [You  do  not  need  to  be  rigorous  in  deriving  your  answer.  You  may 
leave your answer in the form of an equation for k, which  you  do  not  need

to solve numerically.] 

Solution: 

(a) By Poisson merging, the total number of arrivals is a Poisson process with

a rate  of  two  customers  per  minute,  so  in  an  one  minute  window  there are

Pois(2) arrivals.

(b) A fast customer will be in the store at 3pm iff he arrived between 2:59pm

and 3:00pm, because they only stay for a minute. Thus there will be Pois(1)
fast customers in the store. Likewise a slow customer will be in the store

iff he arrived between 2:58pm and 3:00pm, thus there will be Pois(2) slow

customers in the store. As the sum of Pois(λ) and Pois(µ) independent is
Pois(λ + µ), the  total  number  of  customers  in  the  store  at  3:00pm  will  be

Pois(3). This  random  variable  has  variance  3.

(c) (i) By Poisson merging, we can instead suppose that we drew Pois(3) to-

tal customers to be in the store, and then for each customer, with prob-

ability 1/3 assigned them as “fast” and with probability 2/3 assigned 
them as slow, i.d.d. and independent of the total number of customers. 
Thus by independence of the number of customers and their classifi-

cation, conditional on the total number of customers being one, the 
probability the customer will be fast is β = 1/3. 

(ii) Let Z be the amount of time that the customer in the store will remain

before departing. Recall that for a Poisson process conditioned to have

k arrivals in [0, t], the  time  of  each  arrival  is  i.i.d.  Uni(0, t). Thus  the

distribution of the arrival time is Uni(0, 1) when the customer was fast

and Uni(0, 2) when the customer was slow. Thus the distribution of

Z is Uni(0, 1) if the customer was fast and Uni(0, 2) if the customer

was slow. Given that Z = z, the  probability  that  we  have  a  new  ar-

rival before the customer departs is P(Exp(2) < z). Thus  by  total

probability,

4 

P(arrival before departure) = β

∫

1

0

exp(−2z)dz + (1− β)

∫

2

0

1

2
exp(−2z)dz.
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(d) Assume t is integer. Let Xk = Nk − Nk−1 for k integer, so Xk are i.i.d
t Pois(1). We  have  that  N2t −Nt = d Nt = Xk by Lecture 21 page 5 k=1 

property b. Thus for all ϵ > 0, 

by the WLLN. This shows the result for integer t. The  assumption  that  t was 
integer was not essential. Suppose we take t → ∞ along tn = cn for any

c >  0, where  n is integer. Then we can divide Nt into intervals of length c 

by the WLLN. 

k (e) As in the previous problem for integer k, Nk = i=1 Xi, where  Xi ∼
 

Thus we need k that solves 

100 − k √ = −0.7.
k 

Exercise 5. Let S be the set of arrival times in a Poisson process on R (i.e., a 
process that has been running forever), with rate λ. Each  arrival  time  in  S is 
displaced by a random amount. The random displacement associated with each 
element of S is a random variable that takes values in a finite set. We assume 
that the random displacements associated with different arrivals are independent 
and identically distributed. Show that the resulting process (i.e., the process 
whose arrival times are the displaced points) is a Poisson process with rate λ. 
(We expect a proof consisting of a verbal argument, using known properties of 
Poisson processes; formulas are not needed.) 
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Xi, where Xi ∼
Pois(1) are i.i.d., and thus E[X1] = var(X1) = 1. Thus by the CLT,

P(Nk ≥ 100) = P

(

k
∑

i=1

Xi ≥ 100

)

= P

(

1√
k

k
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(Xi − 1) ≥ 100√
k

− k
)

≈ P

(

N(0, 1) ≥ 100√
k

− k
)

.
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Solution: Let {v1, . . . , vm} be the set of values that our perturbations can

take, and let {p1, . . . , pm} be the probabilities of each perturbation outcome.

As the perturbation are independent of the Poisson process, by Poisson splitting 
this is equivalent to m independent Poisson processes, with rate λpi for i = 
1, . . . ,m, where  the  ith process has every point translated by vi. But  by  the

stationarity property of Poisson process (property b, page 5 of  lecture  21),  the

distribution of the number of points on any interval for each of the i independent 
and translated processes will be the same as if we did not apply the  translation,

since the length of the interval determines the distribution of  the  number  of

points. Finally, we can apply Poisson merging to the untranslated processes 
(which are still independent), to recover a Poisson process with rate λ. 

Exercise 6. 

(a) Consider a Markov chain with several recurrent classes Rl, 1 ≤ l ≤ L.

For each l = 1, 2, . . . , L consider the distribution πl = (πl , 1 ≤ x ≤ N)x 
on the entire states space defined as follows. For each x ∈ Rl, πx = 1/µx,

where µx is the mean recurrence time of state x, and  πy = 0 for all y /∈ Rl.

Show that πl is a stationary distribution. 

(b) Suppose π and µ are stationary distribution of some Markov chain Xn.

Prove that any convex combination ν = λπ +(1− λ)µ is also a stationary

distribution. Namely λ ∈ [0, 1] and ν is defined by νi = λπi + (1− λ)µi.

From parts (a) and (b) we conclude that a Markov chain with several recurrence 
classes has infinitely many stationary distribution. One can show  that  every

stationary distribution can be obtained in the way described by  (b),  namely  as

a convex  combination  λlπl of stationary distributions described in part 1≤l≤L 
(a). 

Solution: 

(a) Let P be the transition matrix of Xn. Fix  some  recurrent  class.  WLOG,

assume that the states of the Markov chain are {1, . . . , n} and the recurrent

class contains states {1, . . . , k}, with  k < n. Let  Q the top left k by k block

of P . In  particular,  let  P have the block decomposition

⎤ ⎣ 
Q 0 

P = 
R S

where the top right corner is all zeros because the states {1, . . . , k} never

transition outside of {1, . . . , k}. 
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Create a new Markov chain that only contains the states {1, . . . , k}, and  the

edges internal to the recurrent class, with the same transition probabilities, 
(so with transition matrix Q). First, we observe that as the set of states 
is a recurrent class, every state in the class can only point to other  states

in the class, thus the transition probabilities leaving each state  sum  to  one

and our new structure is indeed a Markov chain. Next, as the new Markov

chain has a single recurrent class, it has a unique stationary distribution

π = (π1, . . . ,πk) satisfying π ′ Q = π ′ . By  theorem  1  from  lecture  23,

πi = 1/µi, where  µi is the mean recurrence time. (The assumption of 
aperiodicity is only needed to show that the transient distribution converges 
to the steady state distribution.) However, the mean recurrence time of state 
i in the new Markov chain will be same as the mean recurrence time of  state

i in the original Markov chain, as by a coupling argument we can make there 
recurrence times equal surely. Let π̄ be an n dimensional vector such that 

⎦ 
πi i ≤ k

π̄i = 
0 i >  k.

Then π̄ is of the form in the claim, so it suffices to prove that π̄ ′ P = π̄ ′ . Let

Qi be the ith column of Q, Ri be the ith column of R, Si be the ith column 
of S. Then  the  ith column of P for i ≤ k is (Qi, Ri), so

π̄ ′ Pi = π ′ Qi + 0Ri = πi = π̄i

and the ith column of P for i > k  is given by (0, Si), so

π̄ ′ Pi = π ′ 0 + 0Si = 0 = π̄i. 

Thus π̄P = π̄, so  π̄ is stationary. This shows the claim. 

(b) Let P be the transition matrix for Xn. As  π and µ are stationary, we have

that π ′ P = π ′ and µ ′ P = µ ′ . Thus  for  λ ∈ [0, 1], if  ν = λπ + (1 − λ)µ,

then by the linearity,

′ ν ′ P = (λπ + (1− λ)µ) ′ P = λπ ′ P + (1− λ)µ ′ P = λπ ′ + (1− λ)µ = ν ′ ,

thus ν is stationary. 

Exercise 7. Consider a Markov chain {Xk} on the state space {1, . . . , n}, and

suppose that whenever the state is i, a  reward  g(i) is obtained. Let Rk be the 
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total reward obtained over the time interval {0, 1, . . . , k}, that  is,  Rk = g(X0)+
g(X1) +  · · ·+ g(Xk). For  every  state  i, let  

mk(i) =  E[Rk | X0 = i],

and 
vk(i) =  var(Rk | X0 = i)

be the mean and variance, respectively of Rk, conditioned  on  the  initial  state

being equal to i. 

(a) Find a recursion that given the values of mk(1), . . . ,mk(n) allows the

computation of mk+1(1), . . . ,mk+1(n).

(b) Find a recursion that given the values of vk(1), . . . , vk(n) allows the com-

putation of vk+1(1), . . . , vk+1(n). Hint: The following formula (the “law

of total variance”) may be useful:

var(X) =  E[var(X | Y )] + var(E[X | Y ]).

Here, var(X | Y ) stands for the variance of the conditional distribution

of X given Y , and  is  itself  a  random  variable  because  it  is  a  function  of

Y . 

Solution: 

(a) We have mk+1(i) =  E[Rk+1|X0 = i]. Using  the  total  expectation  theorem,

we have:

(b) Let Q = g(X1) +  · · · + g(Xk+1), so  that  Rk+1 = g(X0) +  Q Using the

law of total variance, and noting that adding a constant does not affect

variance, we have: 

var(Rk+1 | X0 = i) =  var(Q | X0 = i)

= var(E[Q | X0 = i,X1]) + E[var(Q | X0 = i,X1)].
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Let us consider the first term in the final sum above: The random vari-

able E[Q | X0 = i,X1] takes the value E[Q | X1 = j] =  mk(j) with

probability pij . Given  that  X0 = i, its  mean  is  thus  

pij mk(j) =  mk+1(i) − g(i),
j 

and therefore its variance is 

pij (g(i) +  mk(j) − mk+1(i))
2 .

j 

For the second term, notice that var(Q | X0 = i,X1) is equal to vk(j)
whenever X1 happens to be j. Thus,  

E[var(Q | X0 = i,X1)] = pijvk(j).
j 

Putting these two terms together, we find: 

var(Rk+1 | X0 = i) =  pij(g(i)+mk(j)−mk+1(i))
2 + pij vk(j).

j j 

Exercise 8. Consider a discrete-time, finite-state Markov chain {Xt}, with  states

{1, . . . , n}, and  transition  probabilities  pij . States  1  and  n are absorbing, that

is, p11 = 1  and pnn = 1. All  other  states  are  transient.  Let  A1 be the 
event that the state eventually becomes 1. For any possible starting state i, let

ai = P(A1 | X0 = i) and assume that ai > 0 for every i ≠ n. Conditional  on

the information that event A1 occurs, is the process Xn necessarily Markov? If 
yes, provide a proof, together with a formula for its transition probabilities. If 
not, provide a counterexample. 

Solution: The answer is yes. Let B be an event of the form 

B = {X0 = i0,X1 = i1, . . . ,Xt−1 = it−1}.

It suffices to show that the transition probability P(Xt+1 = j | Xt = i, A1, B)
is unaffected by the past history (the event B). We have 

P(Xt+1 = j,A1 | Xt = i, B)
P(Xt+1 = j | Xt = i, A1, B) =  . 

P(A1 | Xt = i, B)
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By the Markov property of the process {Xt} (the future is independent of the

past, given the present), we have 

P(Xt+1 = j,A1 | Xt = i, B) = P(Xt+1 = j,A1 | Xt = i),

and 
P(A1 | Xt = i, B) = P(A1 | Xt = i),

from which the desired result follows. 
Furthermore, 

P(Xt+1 = j,A1 | Xt = i)
P(Xt+1 = j | Xt = i, A1) =  

P(A1 | Xt = i)

P(A1 | Xt = i,Xt+1 = j)P(Xt+1 = j | Xt = i)
= 

P(A1 | Xt = i)
pijaj= . 
ai

Exercise 9. A certain  production  device  is  in  one  of  two  states  at  any  time: 
operational or repair. The operation time of the device is a random variable 
which is uniformly distributed over the integers 1, 2, . . . , n. The  repair  time  has

a deterministic  value  m which is a positive integer. The operation mode and 
repair mode alternate and the process continues indefinitely. 

1. For every 1 ≤ i ≤ n, and  t ≥ 0, let  Xt = i if the system is operational

at time t and has been operational continuously for i time units (that is it
was operational at times t − i + 1, . . . , t, but  was  in  the  repair  mode  at

time t − i). For every n + 1 ≤ i ≤ n + m, let  Xt = i if the system is
in the repair mode at time t and the repair mode began at time t − i + 1.

Show that Xt is a Markov chain. Identify the transition rates for this M.c.,

its transient and recurrent states and steady state distributions. How many

are there?

2. Suppose we observe the system in steady state. What is the likelihood

that at the time of the observation the system is operational and has been

operational at least (2/3)n time units?

Solution: 

1. The Markov chain has been drawn in Figure 1. We can justify the tran-

sition probabilities out of state i for 1 ≤ i ≤ n as follows. If X ∼
Uni({1, . . . , n}), then  X conditional on X ≥ i is Uni({i, i + 1, . . . , n}).
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A simple  computation  shows  this.  Thus  as  |{i, . . . , n}| = n − i + 1,

with probability 1/(n − i + 1) the machine will fail in the next time pe-

riod. As the dynamics of Xn are described by the one step transition 
probabilities from each state, Xn is a Markov chain. As there is the path 
1, 2, . . . , n, n  + 1, . . . , n  + m, 1, all  the  states  are  in  the  same  recurrent

class. 

If n = 1, the  MC  is  periodic,  and  not  very  interesting.  From  now  on,

we assume n >  1. Then  the  MC  is  aperiodic  (this  takes  some  work,  but

intuitively, if we can have loops of size m + 1 or m + 2, then  for  all
2 n >  (m + 2)  , you  can  be  in  state  one).  From  the  steady  state  equation

π ′ P = π ′ , we  have  

...

πn+i = πn+i−1 i = 2, . . . ,m  

We can ignore the equation for πn+1 as we have a redundant equation, 
and we note that from the final m− 2 equations and the first equation, we

have that π1 = πn+i for all i = 1, . . . ,m. Now  using  that  the  probabilities

must sum to one, we have 

thus for i = 1, . . . ,m, 

1 
π1 = = πn+i. 

m+ 1 + n−1 
2 
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π1 = πn+m

π2 =

(

n
)

π1

π3 =

(

n

− 1

n

− 2

n− 1

)

π2 =
n− 2

n
π1

...

πi =

(

n− i+ 1

n− i+ 2

)

πi−1 =
n− i+ 1

n
π1 i = 2, . . . , n

πn+1 =
1

n
π1 +

1

n− 1
π2 + · · ·+ 1

2
πn−1 + πn

πn+2 = πn+1

1 = π1 +

n
∑

i=2

n− i+ 1

n
π1 +mπ1 = π1

(

m+ 1 +
n− 1

2

)
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1 2 3 . . .  n− 2 n− 1 n 

n+ 1  n+ 2  n+ 3  . . .  n+m− 2 n+m− 1 n+m 

1− 1 
n

1− 1 
n−1 1− 1 

n−2 
3 
4 

2 
3 

1 
2 

1 
n 

1 
n−1 

1 
n−2 

1 
3 

1 
2 1 

1 1 1 1 1 1 

1 

Figure 1: The Markov chain for problem 11. In the top row, the machine is in 
operation, while in the bottom row, the machine is undergoing repair.  

and for i = 2, . . . , n, 

1 n− i+ 1
πi = 

m+ 1 + n−1 n 
2 

2. 
⎢ ⎥⎛ n n ⎛ 
2n n− i+ 1 n 1 1 

P X∞ ∈ , . . . , n  = πi = π1 = π1 + + 
3 n 18 n 2 

i=2n/3 i=2n/3 
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