

Readings:

Notes from Lecture 21,22 Chapter 7 of Bertsekas and Tsitsiklis "Introduction to Probability" For *stopping times*: [Cinlar] Chapter V.1. [GS] Chapter 6

Exercise 1. A particle performs a random walk on the vertex set of a finite connected undirected graph G , which for simplicity we assume to have neither self-loops nor multiple edges. At each stage it moves to a neighbor of its current position, each such neighbor being chosen with equal probability. If G has η edges, show that the stationary distribution is given by $\pi_v = d_v/(2\eta)$, where d_v is the degree of each vertex v .

Solution: One way to do this problem is to simply check that the proposed solution satisfies the defining equations: $\pi P = \pi$, and $\sum_{v} \pi_v = 1$ (we can see immediately that we have nonnegativity). We have:

$$
\sum_{v} \pi_{v} = \sum_{v} \frac{d_{v}}{2\eta}
$$

$$
= \frac{1}{2\eta} \sum_{v} d_{v}
$$

$$
= 1,
$$

since the sum of the degrees is twice the number of edges (each edge increases the sum of the degrees by exactly 2). Similarly, we can show that $\pi P = \pi$. Let us define δ_{vu} to be 1 if vertices u and v are adjacent, and 0 otherwise. Then, we have:

$$
\sum_{v} \pi_{v} P_{vu} = \frac{1}{2\eta} \sum_{v} d_{v} \left(\frac{1}{d_{v}} \delta_{vu} \right)
$$

$$
= \frac{1}{2\eta} \sum_{v} \delta_{vu}.
$$

But $\sum_{v} \delta_{vu}$ is the number of edges incident to node u, that is, $\sum_{v} \delta_{vu} = d_u$. Therefore we have:

$$
\sum_{v} \pi_{v} P_{vu} = \frac{1}{2\eta} d_u = \frac{d_u}{2\eta} = \pi_u.
$$

Exercise 2. A particle performs a random walk on a bow tie *ABCDE* drawn on Figure 1, where C is the knot. From any vertex, its next step is equally likely to be to any neighbouring vertex. Initially it is at A . Find the expected value of:

- (a) The time of first return to A .
- (b) The number of visits to D before returning to A .
- (c) The number of visits to C before returning to A .
- (d) The time of first return to A , given that there were no visits to E before the return to A.
- (e) The number of visits to D before returning to A , given that there were no visits to E before the return to A.

Figure 1: A bow tie graph.

Solution: First, we can compute that the steady state distribution is π_A = $\pi_B = \pi_D = \pi_E = 1/6$, and $\pi_C = 1/3$. We can do this either by solving a system of linear equations (as usual) or just use our result from the first problem above.

(a) By the result from class, and on the handout, we have: $t_A = 1/\pi_A = 6$. Alternatively, we can solve the following system of equations (observe than t_A appears in only one equation):

$$
t_A = \frac{1}{2}(t_B + 1) + \frac{1}{2}(t_C + 1)
$$

\n
$$
t_B = \frac{1}{2} + \frac{1}{2}(t_C + 1)
$$

\n
$$
t_C = \frac{1}{4} + \frac{1}{4}(t_B + 1) + \frac{1}{4}(t_D + 1) + \frac{1}{4}(t_E + 1)
$$

\n
$$
t_D = \frac{1}{2}(t_C + 1) + \frac{1}{2}(t_E + 1)
$$

\n
$$
t_E = \frac{1}{2}(t_C + 1) + \frac{1}{2}(t_D + 1).
$$

(b) By the result from the handout on Markov Chains, we know that

$$
\pi_D = \frac{\mathbb{E}[\text{# transitions to } D \text{ in a cycle that starts and ends at } A]}{\mathbb{E}[\text{# transitions in a cycle that starts and ends at } A],}
$$

from which we find that the quantity we wish to compute is $6\pi_D = 1$.

- (c) Using the same method as in part (b), we find the answer to be $6\pi_C = 2$.
- (d) We let $\mathbb{P}_i(\cdot) = \mathbb{P}(\cdot | X_0 = i)$, and let T_j be the time of the first passage to state j, and let $\nu_i = \mathbb{P}_i(T_A < T_E)$. Then, as we obtained the equations above, that is, by conditioning on the first step, we have

$$
\nu_A = \frac{1}{2}\nu_B + \frac{1}{2}\nu_C
$$

\n
$$
\nu_B = \frac{1}{2} + \frac{1}{2}\nu_C
$$

\n
$$
\nu_C = \frac{1}{4} + \frac{1}{4}\nu_B + \frac{1}{4}\nu_D
$$

\n
$$
\nu_D = \frac{1}{2}\nu_C.
$$

Solving these, we find: $\nu_A = 5/8, \nu_B = 3/4, \nu_C = 1/2, \nu_D = 1/4$. Now we can compute the conditional transition probabilities, which we call τ_{ij} . We have:

$$
\tau_{AB} = \mathbb{P}_A(X_1 = B | T_A < T_E)
$$
\n
$$
= \frac{\mathbb{P}_A(X_1 = B) \mathbb{P}_B(T_A < T_E)}{\mathbb{P}_A(T_A < T_E)}
$$
\n
$$
= \frac{\nu_B}{2\nu_A} = \frac{3}{5}.
$$

Similarly, we find: $\tau_{AC} = 2/5$, $\tau_{BA} = 2/3$, $\tau_{BC} = 1/3$, $\tau_{CA} = 1/2$, $\tau_{CB} =$ $3/8, \tau_{CD} = 1/8, \tau_{DC} = 1$. Now we have essentially reduced to a problem like part (a). We can compute the conditional expectation by solving a system of linear equations using the new transition probabilities:

$$
\tilde{t}_A = 1 + \frac{3}{5}\tilde{t}_B + \frac{2}{5}\tilde{t}_C
$$
\n
$$
\tilde{t}_B = 1 + \frac{2}{3}(1) + \frac{1}{3}\tilde{t}_C
$$
\n
$$
\tilde{t}_C = 1 + \frac{1}{2}(1) + \frac{3}{8}\tilde{t}_B + \frac{1}{8}\tilde{t}_D
$$
\n
$$
\tilde{t}_D = 1 + \tilde{t}_C.
$$

Solving these equations, yields $\tilde{t}_A = 14/5$.

(e) We can use the conditional transition probabilities above, to reduce to a problem essentially like that in part (b). Let N be the number of visits to D. Then, denoting by η_i the expected value of N given that we start at i, and that $T_A < T_E$, we have the equations:

$$
\eta_A = \frac{3}{5}\eta_B + \frac{2}{5}\eta_B
$$

\n
$$
\eta_B = 0 + \frac{1}{3}\eta_C
$$

\n
$$
\eta_C = 0 + \frac{3}{8}\eta_B + \frac{1}{8}(1 + \eta_D)
$$

\n
$$
\eta_D = \eta_C.
$$

Solving, we obtain: $\eta_A = 1/10$.

Exercise 3. Let $(\Omega, \mathcal{F}) = (\mathbb{R}^{\infty}, \mathcal{B}^{\infty})$, $X_k(\omega) = \omega_k, k \in \mathbb{N}$, be the canonical coordinate functions and $\{\mathcal{F}_k\}$ a filtration of \mathcal{F} . Recall that a filtration is a sequence of increasing σ -algebras $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \cdots$ contained in $\mathcal{F}, \mathcal{F}_k \subset \mathcal{F}$. We say that τ is a stopping time of the filtration $\{\mathcal{F}_k\}$ if

- (a) τ is a positive integer
- (b) for every $k \geq 1$ we have $\{\tau \leq k\} \in \mathcal{F}_k$

Let $\tau : \Omega \to \mathbb{N}$ be $(\mathcal{F}, \mathcal{B})$ measurable. Show that τ is a stopping of $\{\mathcal{F}_k\}$ if and only if for every $\omega, \omega' \in \Omega$ and for every $n \geq 1$

$$
\tau(\omega) = n, \ X_k(\omega) = X_k(\omega') \quad \forall 1 \le k \le n \quad \Rightarrow \quad \tau(\omega') = n. \tag{1}
$$

Solution: A positive integer valued random variable τ is a stopping time if and only if $\{\tau = n\} \in \mathcal{F}_n$ for all n. The forward direction follows from $\{\tau \leq n\} = \bigcup_{k=1}^{n} {\{\tau = k\}}$ and the reverse direction follows from $\{\tau = n\} = {\{\tau \leq n\}}\{\tau \leq n - 1\}$. The relation $\omega \stackrel{n}{\sim} \omega'$ if

$$
X_k(\omega) = X_k(\omega') \quad 1 \le k \le n
$$

is an equivalence relation, i.e. reflexive, symmetric, and transitive. For all $E \subset$ Ω define $[E]_n = \{\omega \in Ω \mid \exists \omega' \in E \text{ s.t. } \omega' \stackrel{n}{\sim} \omega\}.$

$$
[E]_n = \{ \omega \in \Omega \mid \exists \, \omega' \in E \text{ s.t. } \omega' \stackrel{n}{\sim} \omega \}
$$

Condition 1 is equivalent to $[\{\tau = n\}]_n \subset {\tau = n}$. Therefore, it suffices to show that, for all $n, \{\tau = n\} \in \mathcal{F}_n$ if and only if $[\{\tau = n\}]_n \subset \{\tau = n\}.$

Suppose τ is a stopping time. Let

$$
\mathcal{D} = \{ E \subset \Omega \mid [E]_n \subset E \}.
$$

By definition, $\mathcal D$ contains the empty set and sets of the form $X_j^{-1}(B)$ for $B\subset\mathbb R$ and $1 \leq j \leq n$. Moreover, let $\{E_i\} \in \mathcal{D}$, then

$$
\left[\bigcup_{j=1}^{\infty} E_j\right]_n = \bigcup_{j=1}^{\infty} \left[E_j\right]_n \qquad \left[\bigcap_{j=1}^{\infty} E_j\right]_n \subset \bigcap_{j=1}^{\infty} \left[E_j\right]_n,
$$

and therefore, D is a monotone class. Let

$$
\mathcal{C} = \{X_j^{-1}(B) \mid B \in \mathcal{B}, \ 1 \le j \le n\}.
$$

Then, the minimal algebra containing \mathcal{C} $\alpha(\mathcal{C})$ is the set of finite unions of finite intersections of sets of the form $X_j^{-1}(B)$ or $X_j^{-1}(B)^c$. As the inverse image respects complements and D is closed under intersections and unions, D contains $\alpha(C)$ and by the monotone class theorem $\mathcal{D} \supset \sigma(C) = \mathcal{F}_n$. Hence $\{\tau = n\} \in \mathcal{D}.$

Conversely, suppose that condition 1 is satisfied. By definition, $\left[\right\{ \tau = \frac{1}{\tau}\right\}$ $n\vert n = \{\tau = n\}$ and thusly $[\{\tau = n\}\vert n = \{\tau = n\}]$. Therefore, Ω decomposes as a union of equivalence classes $\Omega = \bigcup_{\alpha \in I} U_{\alpha}$, for some indexing set I where $[U_\alpha]_n = U_\alpha$ for all α and $U_\alpha \cap U_\beta = \emptyset$ for $\alpha \neq \beta$. For each $\alpha \in I$ choose a representative $\omega_{\alpha} \in U_{\alpha}$. Let $f : \Omega \to \Omega$ with $f|_{U_{\alpha}} \equiv \omega_{\alpha}$. To show that f is measurable it suffices to check on a generating collection. Let $S \subset \mathcal{N}$ be a finite set and $B = \prod_{s \in S} B_s$ with $B_s \in \mathcal{B}(\mathbb{R})$, then $f^{-1}(B) = \bigcap_{k=1}^n X_k^{-1}(X_k(B)) \in \mathcal{F}_n$ since $X_k(B)$ is either B_k or Ø and X_k is measurable. Therefore, f is $(\mathcal{F}_n, \mathcal{F})$ measurable and, as $[\{\tau = n\}]_n = \{\tau = n\}$ and τ is $(\mathcal{F}, \mathcal{B})$ measurable, $\{\tau = n\} = f^{-1}(\{\tau = n\}) \in \mathcal{F}_n$. Hence τ is a stopping time.

Exercise 4. Let τ be a stopping time of a filtration \mathcal{F}_n . Recall that the σ -algebra \mathcal{F}_{τ} of "past until τ " is defined as

$$
\mathcal{F}_{\tau} = \{ E : E \cap \{ \tau \le n \} \in \mathcal{F}_n \quad \forall n \}
$$

Show that for every random variable V measurable with respect to \mathcal{F}_{τ} there exists a stochastic process $\{G_n, n = 1, ...\}$, with G_n measurable with respect to \mathcal{F}_n , such that

 $V = G_{\tau}$.

(Hint: First consider simple V).

Solution: Let V be a random variable measurable with respect to \mathcal{F}_{τ} . Then V decomposes as

$$
V = V1\{V > 0\} + V1\{V = 0\} - (-V1\{V < 0\} = V_+ - V_-.
$$

Let $G_n = V1\{\tau \leq n\}$. Then $G_\tau = V$ and

$$
G_n = V_+ 1\{\tau \le n\} - V_- 1\{\tau \le n\}.
$$

As random variables are closed under addition and scalar multiplication, it suffices to show that G_n is measurable with respect to \mathcal{F}_n for positive V. If $V > 0$ then $G_n \geq 0$. Let $x \geq 0$. Then

$$
\{G_n>x\}=\{V1\{\tau\leq n\}>x\}=\{V>x\}\cap\{\tau\leq n\}\in\mathcal{F}_n
$$

since V is measurable with respect to \mathcal{F}_{τ} . As $\{(x,\infty)\}\)$ is a generating p-system for the Borel sigma algebra on the real numbers, G_n is measurable with respect to \mathcal{F}_n .

Exercise 5. *(Cover time of C_n)* For a MC with state space X we define τ_{cov} to be the first time that every element of X was visited. The covering time $t_{cov} = \max_{x \in \mathcal{X}} \mathbb{E}^{x}[\tau_{cov}]$. Consider a MC that is a simple random walk on an *n*-cycle: it moves with probability $1/2$ to one of the neighbors each time. Show that $t_{cov}(n) = \frac{n(n-1)}{2}$ (Lovász'93). (Hint: Let τ_n be the first time a simple random walk on $\mathbb Z$ started at 0 visits *n* distinct states. Relate to t_{cov} and gambler's ruin.)

Solution: Clearly, by symmetry, it does not matter what vertex we start from. Let us define σ_k to be the first time that at least k distinct vertices have been visited; obviously $\sigma_1 = 0$. We now note that $t_{cov} = \mathbb{E}[\sigma_n]$; we can also telescope these like so:

$$
\sigma_n = (\sigma_n - \sigma_{n-1}) + (\sigma_{n-1} - \sigma_{n-2}) + \cdots + (\sigma_2 - \sigma_1)
$$

(note that we omit the " $\cdots + \sigma_1$ " because it's just 0). This of course means that $t_{cov} = \sum_{k=1}^{n-1} \mathbb{E}[\sigma_{k+1} - \sigma_k]$ (by linearity).

Now let us examine what the situation is like at time σ_k for $k < n$. We have k visited vertices, which obviously are contiguous (and so form a path); furthermore, X_{σ_k} must be at an endpoint of the path since by definition of σ_k , it must be the first visit we made to this vertex.

Now we ask: how long from then until σ_{k+1} ? Well, we have a Gambler's Ruin problem: exiting either end of the path of visited vertices gives us a new one. To be precise, it's a Gambler's Ruin starting with 1 dollar and ending either with 0 dollars or $k + 1$ dollars; we know that the expected number of steps for this is $j(k+1-j)$ where $j=1$, which gives k steps. Therefore,

$$
\mathbb{E}[\sigma_{k+1} - \sigma_k] = k
$$

Plugging this in to the above, we get

$$
t_{cov} = \sum_{k=1}^{n-1} \mathbb{E}[\sigma_{k+1} - \sigma_k] = \sum_{k=1}^{n-1} k = \frac{n(n-1)}{2}
$$

Exercise 6. *(Last visited vertex of* C_n *)* Consider a simple random walk X_t on an n-cycle C_n and let τ_{cov} be the first time that every vertex was visited. Show that given that $X_0 = v$ the distribution of $X_{\tau_{cov}}$ is uniform on $\{v\}^c$. (Hint: Notice that to have $X_{\tau_{cov}} = k$ the random walk should visit the states $k - 1$ and $k + 1$ before k . $)$

Fun fact: cycles and cliques are the only graphs with this property (Lovász-Winkler'93).

Solution: Fix a vertex x; let σ_x be the first time that a *neighbor* of x is visited. For $x \neq v$, obviously a neighbor of x must be visited before x is (keeping in mind that v itself could be this neighbor). Let $u = X_{\sigma_u}$ (the first neighbor visited) and w be the other neighbor, which by definition has not been visited by time σ_x .

Now note that if x is visited before w , then x cannot be the last vertex, i.e. $X_{\tau_{cov}} \neq x$; but if w is visited before x, then *every* other vertex must have also been visited before x since there is no way to get from u to w without either passing through x or passing through literally every other vertex.

Finally, note that this is simply a Gambler's Ruin problem - where the gambler starts with 1 dollar (since u is next to x) and wins if he gets to $n - 1$ dollars (since w is the target). The probability of winning is just $\frac{1}{n-1}$. Since this holds regardless of what x is (provided $x \neq v$ of course) we get that every non-v vertex has an equal probability of being the final vertex.

(Sanity check: The probabilities should sum up to 1, which they do because there are $n - 1$ non-starting vertices, each with $\frac{1}{n-1}$ probability of being the last visited.)

Exercise 7. Let B_k be iid with law $\mathbb{P}[B_k = +1] = p = 1 - \mathbb{P}[B_k = -1]$. Answer the following:

• Let $X_n = B_n B_{n+1}$, $n \ge 0$. Is it Markov? If yes, find its transition kernel.

- Let $Y_n = \frac{1}{2}(B_n B_{n-1}), n \ge 1$. Is it Markov? If yes, find its transition kernel.
- Let $Z_n = |\sum_{k=1}^n B_k|, n \ge 1$. Is it Markov? If yes, find its transition kernel.
- If $\{V_i, i \geq 0\}$ is a Markov process with state space X, and E_j are some subsets of X , is it true that

$$
\mathbb{P}[V_n \in E_n | V_{n-1} \in E_{n-1}, V_{n-2} \in E_{n-2}, \dots, V_0 \in E_0] = \mathbb{P}[V_n \in E_n | V_{n-1} \in E_{n-1}],
$$

provided that $\mathbb{P}[V_{n-1} \in E_{n-1}, \ldots, V_0 \in E_0] > 0$?

• Suppose that $P(x, y)$ is a kernel of an irreducible Markov chain. If $P(\cdot, x_1) =$ $P(\cdot, x_2)$ show that $\pi(x_1) = \pi(x_2)$, where π is a stationary distribution. What if the chain is not irreducible?

Solution:

1) It is not Markov (a couple exceptions, listed at the end). Let $p = 0.99$, and consider $\mathbb{P}[X_3 = 1 | X_2 = -1]$. Note that $X_2 = -1$ means either $B_2 = -1$ and $B_3 = 1$ or vice versa; and (given no other information) these two cases are equally probable. So no matter what B_4 happens to be, $\mathbb{P}[X_3 = 1 | X_2 = -1] =$ 1/2. But now suppose that we add the information that $X_1 = -1$ as well. If $X_1 = X_2 = -1$, then we have one of the following two cases:

- 1. $(B_1, B_2, B_3) = (-1, 1, -1);$
- 2. $(B_1, B_2, B_3) = (1, -1, 1).$

Note that the second case is vastly more probable than the first; therefore,

$$
\mathbb{P}[X_3 = 1 | X_2 = -1, X_1 = -1] > 1/2
$$

(we could calculate it precisely using Baye's Theorem, but we don't really need to go to the trouble). Therefore $\{X_n\}$ does not satisfy the Markov property.

(**Remark:** The exceptions are when $p = 1/2$ or, if we'll allow such a thing, $p = 0$ or 1.)

2) Same as for 1 - a counterexample can be easily constructed, so it is not Markovian.

3) Yes it is Markov, although this is far from obvious. We'll be using the *reflection principle* to see this. First, note that if $Z_n = 0$, then $Z_{n+1} = 1$ for sure, so that $P(0, 1) = 1$; also note that Z_n can never move except by 1, so $P(i, j) = 0$ for all $|i - j| \neq 1$.

Now let's start with the difficult part. Since

$$
Z_n = \sum_{k=1}^n B_n
$$

it is obvious that $P(i, j) = 0$ if $j \neq i - 1, i + 1$. Furthermore, we can easily see that $P(0, 1) = 1$ (and that this obviously does not depend on the history), and that Z_n can never be negative. Now we just have to examine $P(i, i + 1)$ (noting that $P(i, i - 1) = 1 - P(i, i + 1)$.

We define $W_n := \sum_{k=1}^n B_k$. Now note that if we know whether W_n is positive or negative, we could immediately determine $\mathbb{P}[Z_{n+1} = Z_n + 1]$ – it would be p if $W_n > 0$, and $1 - p$ if $W_n < 0$ – and therefore the transition probabilities would only be determined by the current position Z_n .

Now suppose that $Z_k = z_k$ for all $k = 0, 1, \ldots, n$, and $z_n = \ell$ (the current state). Then we can define a *possible history* of W_k 's as a sequence $\mathbf{w} = (w_0, w_1, \dots, w_n)$ such that

- $w_k \in \{-z_k, z_k\}$ (so that $|w_k| = z_k$) for all k;
- $|w_k w_{k-1}| = 1$ for all $k = 1, 2, ..., n$.

Define S to be the set of all such sequences (and obviously it is finite); define

$$
S_- := \{ \mathbf{w} \in S : w_n = -\ell \} \text{ and } S_+ := \{ \mathbf{w} \in S : w_n = \ell \}
$$

Note the following:

- this is a partition of S every $w \in S$ is in exactly one of S_-, S_+ ;
- $|S_-\| = |S_+|$ because for any $w \in S_-\$, we have $-w \in S_+$ (this is the "reflection" we were talking about). So let's call

$$
m := |S_-| = |S_+|
$$

• for any $w \in S_$, we have $\frac{n-\ell}{2}$ increments (corresponding to $B_k = 1$) and $\frac{n+\ell}{2}$ decrements (corresponding to $B_k = -1$), and for any $w \in S_+$, we have $\frac{n+\ell}{2}$ increments and $\frac{n-\ell}{2}$ decrements. Therefore,

$$
\mathbb{P}[W_k = w_k \text{ for all } k \le n] = \begin{cases} p^{\frac{n+\ell}{2}} (1-p)^{\frac{n-\ell}{2}} & \text{if } \mathbf{w} \in S_+ \\ p^{\frac{n-\ell}{2}} (1-p)^{\frac{n+\ell}{2}} & \text{if } \mathbf{w} \in S_- \end{cases}
$$

Note that this only depends on the value of w_n .

Note, therefore, that

$$
\mathbb{P}[Z_k = z_k \text{ for } k \le n] = \sum_{\mathbf{w} \in S} \mathbb{P}[W_k = w_k \text{ for } k \le n]
$$

\n
$$
= \sum_{\mathbf{w} \in S_+} \mathbb{P}[W_k = w_k \text{ for } k \le n] + \sum_{\mathbf{w} \in S_-} \mathbb{P}[W_k = w_k \text{ for } k \le n]
$$

\n
$$
= \sum_{\mathbf{w} \in S_+} p^{\frac{n+\ell}{2}} (1-p)^{\frac{n-\ell}{2}} + \sum_{\mathbf{w} \in S_-} p^{\frac{n-\ell}{2}} (1-p)^{\frac{n+\ell}{2}}
$$

\n
$$
= m(p^{\frac{n+\ell}{2}}(1-p)^{\frac{n-\ell}{2}} + p^{\frac{n-\ell}{2}}(1-p)^{\frac{n+\ell}{2}})
$$

\n
$$
= m(p(1-p))^{\frac{n-\ell}{2}} (p^{\ell} + (1-p)^{\ell})
$$

Now we can apply Bayes' Theorem (remember that $z_n = \ell$ here):

$$
\mathbb{P}[W_n = \ell \,|\, Z_k = z_k \text{ for } k \le n] = \mathbb{P}[\{W_k\} \in S_+ \,|\, Z_k = z_k \text{ for } k \le n]
$$
\n
$$
= \frac{\mathbb{P}[\{W_k\} \in S_+] \cdot \mathbb{P}[Z_k = z_k \,|\, \{W_k\} \in S_+]}{\mathbb{P}[Z_k = z_k \text{ for } k \le n]}
$$
\n
$$
= \frac{\mathbb{P}[\{W_k\} \in S_+]}{\mathbb{P}[Z_k = z_k \text{ for } k \le n]}
$$
\n
$$
= \frac{m(p(1-p))^{\frac{n-\ell}{2}}(p^{\ell})}{m(p(1-p))^{\frac{n-\ell}{2}}(p^{\ell} + (1-p)^{\ell})}
$$
\n
$$
= \frac{p^{\ell}}{p^{\ell} + (1-p)^{\ell}}
$$

(part of this was noting that $\mathbb{P}[Z_k = z_k | \{W_k\} \in S_+] = 1$ by definition of S_+). Note that this depends *only* on the value of $Z_n = \ell$, and not on any other Z_k 's or even on n – so therefore we can conclud that it is *Markovian*!.

Now we have to compute the transition kernel. We have:

$$
\mathbb{P}[W_n = -\ell \,|\, Z_k = z_k \text{ for } k \le n] = 1 - \frac{p^{\ell}}{p^{\ell} + (1-p)^{\ell}} = \frac{(1-p)^{\ell}}{p^{\ell} + (1-p)^{\ell}}
$$

Therefore (letting $z_n = \ell$ below), we get $\mathbb{P}[Z_{n+1} = \ell + 1 \mid Z_k = z_k$ for $k \leq n]$

$$
= \mathbb{P}[Z_{n+1} = \ell + 1 \text{ and } W_n = \ell \,|\, Z_k = z_k \text{ for } k \le n]
$$

$$
+ \mathbb{P}[Z_{n+1} = \ell + 1 \text{ and } W_n = -\ell \,|\, Z_k = z_k \text{ for } k \le n]
$$

Dealing with each piece here on its own, we get:

$$
\mathbb{P}[Z_{n+1} = \ell + 1 \text{ and } W_n = \ell \mid Z_k = z_k \text{ for } k \le n]
$$

=
$$
\mathbb{P}[Z_{n+1} = \ell + 1 \mid W_n = \ell \text{ and } Z_k = z_k \text{ for } k \le n] \cdot \mathbb{P}[W_n = \ell \mid Z_k = z_k \text{ for } k \le n]
$$

=
$$
p \cdot \mathbb{P}[W_n = \ell \mid Z_n = \ell] = \frac{p^{\ell+1}}{p^{\ell} + (1-p)^{\ell}}
$$

An analogous computation for the other piece gives

$$
\mathbb{P}[Z_{n+1} = \ell + 1 \text{ and } W_n = -\ell \,|\, Z_k = z_k \text{ for } k \le n] = \frac{(1-p)^{\ell+1}}{p^{\ell} + (1-p)^{\ell}}
$$

We then finally put all of this together to get

$$
P(\ell, \ell + 1) = \mathbb{P}[Z_{n+1} = \ell + 1 | Z_n = \ell] = \frac{p^{\ell+1} + (1-p)^{\ell+1}}{p^{\ell} + (1-p)^{\ell}}
$$

(and of course $P(\ell, \ell - 1) = 1 - \frac{p^{\ell+1} + (1-p)^{\ell+1}}{p^{\ell} + (1-p)^{\ell}}$). As noted at the very top, we have also $P(0, 1) = 1$ and $P(i, j) = 0$ for all $j \neq i + 1, i - 1$.

(Remark: A common error was to assume that because the answer differs depending on the history of the B_k 's, it cannot be Markov. But when evaluating whether the Z_n 's are Markov, you cannot look at the history of the B_k 's, only on the history of the Z_n 's.)

4) Not always. An easy example is a random walk on a 6-cycle (labeled in order a, b, c, d, e, f) with uniformly-randomly-chosen starting point V_0 ; let $E_n = \{a\}$ and $E_{n-2} = \{d\}$ and $E_{n-1} = \mathcal{X}$ (the rest of the E_k don't matter, but if we want to feel better about ourselves we can set them to $\mathcal X$ as well). Then

$$
\mathbb{P}[V_n \in E_n \, | \, V_{n-1} \in E_{n-1}] = \mathbb{P}[V_n = a] = 1/6
$$

because the condition $V_{n-1} \in \mathcal{X}$ says nothing. But of course if $V_{n-2} \in E_{n-2}$ (i.e. $V_{n-2} = d$), there's no way that $V_n = a$ since you can't reach it in time. So

$$
\mathbb{P}[V_n \in E_n \,|\, V_k \in E_k \text{ for all } k < n] = 0 \neq 1/6
$$

5) This follows easily from the equation $\pi^T = \pi^T P$. If the chain is not irreducible, that does not alter the previous statement, so it remains true.

MIT OpenCourseWare <https://ocw.mit.edu>

6.436J / 15.085J Fundamentals of Probability Fall 2018

For information about citing these materials or our Terms of Use, visit[: https://ocw.mit.edu/terms](https://ocw.mit.edu/terms)