
 
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

6.436J/15.085J Fall 2018 
Problem Set 11 

Readings: 
Notes from Lecture 21,22 
Chapter 7 of Bertsekas and Tsitsiklis ”Introduction to Probability” 
For stopping times: [Cinlar] Chapter V.1. 
[GS] Chapter 6 

Exercise 1. A particle performs a random walk on the vertex set of a finite 
connected undirected graph G, which for simplicity we assume to have neither 
self-loops nor multiple edges. At each stage it moves to a neighbor of its current 
position, each such neighbor being chosen with equal probability. If G has η 
edges, show that the stationary distribution is given by πv = dv/(2η), where dv 

is the degree of each vertex v. 

Solution: One way to do this problem is to simply check that the proposed P 
solution satisfies the defining equations: πP = π, and πv = 1 (we can see v 
immediately that we have nonnegativity). We have: X X dv 

πv = 
2η 

v v X 1 
= dv 

2η 
v 

= 1, 

since the sum of the degrees is twice the number of edges (each edge increases 
the sum of the degrees by exactly 2). Similarly, we can show that πP = π. Let 
us define δvu to be 1 if vertices u and v are adjacent, and 0 otherwise. Then, we 
have: � � X X 1 1 

πvPvu = dv δvu 
2η dv v v X 1 

= δvu. 
2η 

v P P 
But δvu is the number of edges incident to node u, that is, δvu = du. v v 
Therefore we have: X 1 du 

πvPvu = du = = πu. 
2η 2η 

v 
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Exercise 2. A particle performs a random walk on a bow tie ABCDE drawn 
on Figure 1, where C is the knot. From any vertex, its next step is equally likely 
to be to any neighbouring vertex. Initially it is at A. Find the expected value of: 

(a) The time of first return to A. 

(b) The number of visits to D before returning to A. 

(c) The number of visits to C before returning to A. 

(d) The time of first return to A, given that there were no visits to E before the 
return to A. 

(e) The number of visits to D before returning to A, given that there were no 
visits to E before the return to A. 

A

B
C

E

D

Figure 1: A bow tie graph. 

Solution: First, we can compute that the steady state distribution is πA = 
πB = πD = πE = 1/6, and πC = 1/3. We can do this either by solving a 
system of linear equations (as usual) or just use our result from the first problem 
above. 

(a) By the result from class, and on the handout, we have: tA = 1/πA = 6. 
Alternatively, we can solve the following system of equations (observe 
than tA appears in only one equation): 

1 1 
tA = (tB + 1) + (tC + 1) 

2 2 
1 1 

tB = + (tC + 1) 
2 2 
1 1 1 1 

tC = + (tB + 1) + (tD + 1) + (tE + 1) 
4 4 4 4 
1 1 

tD = (tC + 1) + (tE + 1) 
2 2 
1 1 

tE = (tC + 1) + (tD + 1). 
2 2 
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(b) By the result from the handout on Markov Chains, we know that 

E[# transitions to D in a cycle that starts and ends at A] 
πD = , 

E[# transitions in a cycle that starts and ends at A] 

from which we find that the quantity we wish to compute is 6πD = 1. 

(c) Using the same method as in part (b), we find the answer to be 6πC = 2. 

(d) We let Pi(·) = P(·|X0 = i), and let Tj be the time of the first passage to 
state j, and let νi = Pi(TA < TE). Then, as we obtained the equations 
above, that is, by conditioning on the first step, we have 

1 1 
νA = νB + νC 

2 2 
1 1 

νB = + νC 
2 2 
1 1 1 

νC = + νB + νD 
4 4 4 
1 

νD = νC . 
2 

Solving these, we find: νA = 5/8, νB = 3/4, νC = 1/2, νD = 1/4. Now 
we can compute the conditional transition probabilities, which we call τij . 
We have: 

τAB = PA(X1 = B|TA < TE ) 
PA(X1 = B)PB (TA < TE ) 

= 
PA(TA < TE ) 

νB 3 
= = . 

2νA 5 

Similarly, we find: τAC = 2/5, τBA = 2/3, τBC = 1/3, τCA = 1/2, τCB = 
3/8, τCD = 1/8, τDC = 1. Now we have essentially reduced to a prob-
lem like part (a). We can compute the conditional expectation by solving 
a system of linear equations using the new transition probabilities: 

3 2 ˜ ˜ ˜ tA = 1 + tB + tC 
5 5 

t̃B = 1 + 
2
(1) + 

1 
t̃C 

3 3 
1 3 1 

t̃C = 1 + (1) + t̃B + t̃D 
2 8 8 

t̃D = 1 + t̃C . 

Solving these equations, yields t̃A = 14/5. 
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(e) We can use the conditional transition probabilities above, to reduce to a 
problem essentially like that in part (b). Let N be the number of visits to 
D. Then, denoting by ηi the expected value of N given that we start at i, 
and that TA < TE , we have the equations: 

3 2 
ηA = ηB + ηB 

5 5 
1 

ηB = 0 + ηC 
3 
3 1 

ηC = 0 + ηB + (1 + ηD) 
8 8 

ηD = ηC . 

Solving, we obtain: ηA = 1/10. 

Exercise 3. Let (Ω, F) = (R∞ , B∞), Xk(ω) = ωk, k ∈ N, be the canonical 
coordinate functions and {Fk} a filtration of F . Recall that a filtration is a 
sequence of increasing σ-algebras F1 ⊂ F2 ⊂ · · · contained in F , Fk ⊂ F . 
We say that τ is a stopping time of the filtration {Fk} if 

(a) τ is a positive integer 

(b) for every k ≥ 1 we have {τ ≤ k} ∈ Fk 

Let τ : Ω → N be (F , B) measurable. Show that τ is a stopping of {Fk} if 
and only if for every ω, ω0 ∈ Ω and for every n ≥ 1 

τ (ω) = n, Xk(ω) = Xk(ω
0) ∀ 1 ≤ k ≤ n ⇒ τ (ω0) = n. (1) 

Solution: A positive integer valued random variable τ is a stopping time 
if and only if {τ = n} ∈ Fn for all n. The forward direction follows from S n {τ ≤ n} = {τ = k} and the reverse direction follows from {τ = n} = k=1 

n {τ ≤ n}\{τ ≤ n − 1}. The relation ω ∼ ω0 if 

Xk(ω) = Xk(ω
0) 1 ≤ k ≤ n 

is an equivalence relation, i.e. reflexive, symmetric, and transitive. For all E ⊂ 
Ω define 

n 
[E]n = {ω ∈ Ω | ∃ ω0 ∈ E s.t. ω0 ∼ ω}. 

Condition 1 is equivalent to [{τ = n}]n ⊂ {τ = n}. Therefore, it suffices to 
show that, for all n, {τ = n} ∈ Fn if and only if [{τ = n}]n ⊂ {τ = n}. 
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Suppose τ is a stopping time. Let 

D = {E ⊂ Ω | [E]n ⊂ E}. 

By definition, D contains the empty set and sets of the form Xj 
−1(B) for B ⊂ R 

and 1 ≤ j ≤ n. Moreover, let {Ej } ∈ D, then ⎡ ⎤ ⎡ ⎤ 
∞ ∞ ∞ ∞ [ [ \ \ ⎣ Ej ⎦ = [Ej ] ⎣ Ej ⎦ ⊂ [Ej ] , n n 
j=1 j=1 j=1 j=1 

n n 

and therefore, D is a monotone class. Let 

C = {X−1(B) | B ∈ B, 1 ≤ j ≤ n}. j 

Then, the minimal algebra containing C α(C) is the set of finite unions of fi-
nite intersections of sets of the form Xj 

−1(B) or Xj 
−1(B)c . As the inverse im-

age respects complements and D is closed under intersections and unions, D 
contains α(C) and by the monotone class theorem D ⊃ σ(C) = Fn. Hence 
{τ = n} ∈ D. 

Conversely, suppose that condition 1 is satisfied. By definition, [{τ = 
n}]n ⊃ {τ = n} and thusly [{τ = n}]n = {τ = n}. Therefore, Ω decomposes S 
as a union of equivalence classes Ω = Uα, for some indexing set I where α∈I 
[Uα]n = Uα for all α and Uα ∩ Uβ = Ø for α 6= β. For each α ∈ I choose a 
representative ωα ∈ Uα. Let f : Ω → Ω with f|Uα ≡ ωα. To show that f is mea-
surable it suffices to check on a generating collection. Let S ⊂ N be a finite set Q T n X−1 and B = Bs with Bs ∈ B(R), then f−1(B) = (Xk(B)) ∈ Fn s∈S k=1 k 
since Xk(B) is either Bk or Ø and Xk is measurable. Therefore, f is (Fn, F) 
measurable and, as [{τ = n}]n = {τ = n} and τ is (F , B) measurable, 
{τ = n} = f−1({τ = n}) ∈ Fn. Hence τ is a stopping time. 

Exercise 4. Let τ be a stopping time of a filtration Fn. Recall that the σ-algebra 
Fτ of “past until τ ” is defined as 

Fτ = {E : E ∩ {τ ≤ n} ∈ Fn ∀n} 

Show that for every random variable V measurable with respect to Fτ there 
exists a stochastic process {Gn, n = 1, . . .}, with Gn measurable with respect 
to Fn, such that 

V = Gτ . 

(Hint: First consider simple V ). 
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Solution: Let V be a random variable measurable with respect to Fτ . Then V 
decomposes as 

V = V 1{V > 0} + V 1{V = 0} − (−V )1{V < 0} = V+ − V−. 

Let Gn = V 1{τ ≤ n}. Then Gτ = V and 

Gn = V+1{τ ≤ n} − V−1{τ ≤ n}. 

As random variables are closed under addition and scalar multiplication, it suf-
fices to show that Gn is measurable with respect to Fn for positive V . If V > 0 
then Gn ≥ 0. Let x ≥ 0. Then 

{Gn > x} = {V 1{τ ≤ n} > x} = {V > x} ∩ {τ ≤ n} ∈ Fn 

since V is measurable with respect to Fτ . As {(x, ∞)} is a generating p-system 
for the Borel sigma algebra on the real numbers, Gn is measurable with respect 
to Fn. 

Exercise 5. (Cover time of Cn) For a MC with state space X we define τcov 

to be the first time that every element of X was visited. The covering time 
tcov = maxx∈X Ex[τcov]. Consider a MC that is a simple random walk on 
an n-cycle: it moves with probability 1/2 to one of the neighbors each time. 

n(n−1) Show that tcov(n) = (Lov´ be the first time a asz’93). (Hint: Let τn 2 
simple random walk on Z started at 0 visits n distinct states. Relate to tcov and 
gambler’s ruin. ) 

Solution: Clearly, by symmetry, it does not matter what vertex we start from. 
Let us define σk to be the first time that at least k distinct vertices have been 
visited; obviously σ1 = 0. We now note that tcov = E[σn]; we can also telescope 
these like so: 

σn = (σn − σn−1) + (σn−1 − σn−2) + · · · + (σ2 − σ1) 

(note that we omit the “· · · + σ1 ” because it’s just 0). This of course means that P n−1 tcov = k=1 E[σk+1 − σk] (by linearity). 
Now let us examine what the situation is like at time σk for k < n. We 

have k visited vertices, which obviously are contiguous (and so form a path); 
furthermore, Xσk must be at an endpoint of the path since by definition of σk, it 
must be the first visit we made to this vertex. 

Now we ask: how long from then until σk+1? Well, we have a Gambler’s 
Ruin problem: exiting either end of the path of visited vertices gives us a new 
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one. To be precise, it’s a Gambler’s Ruin starting with 1 dollar and ending either 
with 0 dollars or k + 1 dollars; we know that the expected number of steps for 
this is j(k + 1 − j) where j = 1, which gives k steps. Therefore, 

E[σk+1 − σk] = k 

Plugging this in to the above, we get 

n−1 n−1 X X n(n − 1) 
tcov = E[σk+1 − σk] = k = 

2 
k=1 k=1 

Exercise 6. (Last visited vertex of Cn) Consider a simple random walk Xt on an 
n-cycle Cn and let τcov be the first time that every vertex was visited. Show that 
given that X0 = v the distribution of Xτcov is uniform on {v}c . (Hint: Notice 
that to have Xτcov = k the random walk should visit the states k − 1 and k + 1 
before k. ) 
Fun fact: cycles and cliques are the only graphs with this property (Lovász-
Winkler’93). 

Solution: Fix a vertex x; let σx be the first time that a neighbor of x is visited. 
For x 6= v, obviously a neighbor of x must be visited before x is (keeping in 
mind that v itself could be this neighbor). Let u = Xσu (the first neighbor 
visited) and w be the other neighbor, which by definition has not been visited by 
time σx. 

Now note that if x is visited before w, then x cannot be the last vertex, i.e. 
Xτcov 6= x; but if w is visited before x, then every other vertex must have also 
been visited before x since there is no way to get from u to w without either 
passing through x or passing through literally every other vertex. 

Finally, note that this is simply a Gambler’s Ruin problem - where the gam-
bler starts with 1 dollar (since u is next to x) and wins if he gets to n − 1 dollars 

1 (since w is the target). The probability of winning is just . Since this holds n−1 
regardless of what x is (provided x 6= v of course) we get that every non-v 
vertex has an equal probability of being the final vertex. 

(Sanity check: The probabilities should sum up to 1, which they do because 
1 there are n − 1 non-starting vertices, each with probability of being the last n−1 

visited.) 

Exercise 7. Let Bk be iid with law P[Bk = +1] = p = 1 − P[Bk = −1]. 
Answer the following: 

• Let Xn = BnBn+1, n ≥ 0. Is it Markov? If yes, find its transition kernel. 
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1 • Let Yn = − Bn−1), n ≥ 1. Is it Markov? If yes, find its transition 2 (Bn 

kernel. P n • Let Zn = | Bk|, n ≥ 1. Is it Markov? If yes, find its transition k=1 
kernel. 

• If {Vi, i ≥ 0} is a Markov process with state space X , and Ej are some 
subsets of X , is it true that 

P[Vn ∈ En|Vn−1 ∈ En−1, Vn−2 ∈ En−2, . . . , V0 ∈ E0] = P[Vn ∈ En|Vn−1 ∈ En−1] , 

provided that P[Vn−1 ∈ En−1, . . . , V0 ∈ E0] > 0? 

• Suppose that P (x, y) is a kernel of an irreducible Markov chain. If P (·, x1) = 
P (·, x2) show that π(x1) = π(x2), where π is a stationary distribution. 
What if the chain is not irreducible? 

Solution: 
1) It is not Markov (a couple exceptions, listed at the end). Let p = 0.99, 

and consider P[X3 = 1|X2 = −1]. Note that X2 = −1 means either B2 = −1 
and B3 = 1 or vice versa; and (given no other information) these two cases are 
equally probable. So no matter what B4 happens to be, P[X3 = 1|X2 = −1] = 
1/2. But now suppose that we add the information that X1 = −1 as well. If 
X1 = X2 = −1, then we have one of the following two cases: 

1. (B1, B2, B3) = (−1, 1, −1); 

2. (B1, B2, B3) = (1, −1, 1). 

Note that the second case is vastly more probable than the first; therefore, 

P[X3 = 1|X2 = −1, X1 = −1] > 1/2 

(we could calculate it precisely using Baye’s Theorem, but we don’t really need 
to go to the trouble). Therefore {Xn} does not satisfy the Markov property. 

(Remark: The exceptions are when p = 1/2 or, if we’ll allow such a thing, 
p = 0 or 1.) 

2) Same as for 1 - a counterexample can be easily constructed, so it is not 
Markovian. 

3) Yes it is Markov, although this is far from obvious. We’ll be using the 
reflection principle to see this. First, note that if Zn = 0, then Zn+1 = 1 for 
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sure, so that P (0, 1) = 1; also note that Zn can never move except by 1, so 
P (i, j) = 0 for all |i − j| 6= 1. 

Now let’s start with the difficult part. Since 
nX 

Zn = Bn 

k=1 

it is obvious that P (i, j) = 0 if j 6= i − 1, i + 1. Furthermore, we can easily see 
that P (0, 1) = 1 (and that this obviously does not depend on the history), and 
that Zn can never be negative. Now we just have to examine P (i, i + 1) (noting 
that P (i, i − 1) = 1 − P (i, i + 1). P n We define Wn := Now note that if we know whether Wn is k=1 Bk. 
positive or negative, we could immediately determine P[Zn+1 = Zn + 1] – it 
would be p if Wn > 0, and 1 − p if Wn < 0 – and therefore the transition 
probabilities would only be determined by the current position Zn. 

Now suppose that Zk = zk for all k = 0, 1, . . . , n, and zn = ` (the 
current state). Then we can define a possible history of Wk’s as a sequence 
w = (w0, w1, . . . , wn) such that 

• wk ∈ {−zk, zk} (so that |wk| = zk) for all k; 

• |wk − wk−1| = 1 for all k = 1, 2, . . . , n. 

Define S to be the set of all such sequences (and obviously it is finite); define 

S− := {w ∈ S : wn = −`} and S+ := {w ∈ S : wn = `} 

Note the following: 

• this is a partition of S – every w ∈ S is in exactly one of S−, S+; 

• |S−| = |S+| because for any w ∈ S−, we have −w ∈ S+ (this is the 
“reflection” we were talking about). So let’s call 

m := |S−| = |S+| 

• for any w ∈ S−, we have n−` increments (corresponding to Bk = 1) and 2 
n+` decrements (corresponding to Bk = −1), and for any w ∈ S+, we 2 
have n+` increments and n−` decrements. Therefore, 2 2 ( 

n+` n−` 
p 2 (1 − p) 2 

P[Wk = wk for all k ≤ n] = n−` n+` 
p 2 (1 − p) 2 

if w ∈ S+ 

if w ∈ S− 

Note that this only depends on the value of wn. 
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Note, therefore, that X 
P[Zk = zk for k ≤ n] = P[Wk = wk for k ≤ n] 

w∈SX X 
= P[Wk = wk for k ≤ n] + P[Wk = wk for k ≤ n] 

w∈S+ w∈S− X X n+` n−` n−` n+` 
= p 2 (1 − p) 2 + p 2 (1 − p) 2 

w∈S+ w∈S− � n+` n−` n−` n+` � 
= m p 2 (1 − p) 2 + p 2 (1 − p) 2 

n−` � � 
` = m(p(1 − p)) 2 p + (1 − p) ` 

Now we can apply Bayes’ Theorem (remember that zn = ` here): 

P[Wn = ` | Zk = zk for k ≤ n] = P[{Wk} ∈ S+ | Zk = zk for k ≤ n] 

P[{Wk} ∈ S+] · P[Zk = zk | {Wk} ∈ S+] 
= 

P[Zk = zk for k ≤ n] 
P[{Wk} ∈ S+] 

= 
P[Zk = zk for k ≤ n] 

n−` � � 
` m(p(1 − p)) 2 p 

= n−` � � 
` m(p(1 − p)) 2 p + (1 − p) ̀  

` p 
= 

` p + (1 − p)` 

(part of this was noting that P[Zk = zk | {Wk} ∈ S+] = 1 by definition of S+). 
Note that this depends only on the value of Zn = `, and not on any other Zk’s 
or even on n – so therefore we can conclud that it is Markovian!. 

Now we have to compute the transition kernel. We have: 

` p (1 − p) ̀  

P[Wn = −` | Zk = zk for k ≤ n] = 1 − = 
` ` p + (1 − p)` p + (1 − p)` 

Therefore (letting zn = ` below), we get P[Zn+1 = ` + 1 | Zk = zk for k ≤ n] 

= P[Zn+1 = ` + 1 and Wn = ` | Zk = zk for k ≤ n] 

+ P[Zn+1 = ` + 1 and Wn = −` | Zk = zk for k ≤ n] 
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Dealing with each piece here on its own, we get: 

P[Zn+1 = ` + 1 and Wn = ` | Zk = zk for k ≤ n] 

= P[Zn+1 = ` + 1 | Wn = ` and Zk = zk for k ≤ n] · P[Wn = ` | Zk = zk for k ≤ n] 
`+1 p 

= p · P[Wn = ` | Zn = `] = 
` p + (1 − p) ̀  

An analogous computation for the other piece gives 

(1 − p) ̀+1 

P[Zn+1 = ` + 1 and Wn = −` | Zk = zk for k ≤ n] = 
` p + (1 − p)` 

We then finally put all of this together to get 

p ̀+1 + (1 − p) ̀+1 

P (`, ̀  + 1) = P[Zn+1 = ` + 1 | Zn = `] = 
` p + (1 − p)` 

`+1+(1−p) ̀+1 
(and of course P (`, ̀  − 1) = 1 − p ). As noted at the very top, we 

p ̀  +(1−p) ̀  

have also P (0, 1) = 1 and P (i, j) = 0 for all j 6= i + 1, i − 1. 
(Remark: A common error was to assume that because the answer differs 

depending on the history of the Bk’s, it cannot be Markov. But when evaluating 
whether the Zn’s are Markov, you cannot look at the history of the Bk’s, only 
on the history of the Zn’s.) 

4) Not always. An easy example is a random walk on a 6-cycle (labeled 
in order a, b, c, d, e, f ) with uniformly-randomly-chosen starting point V0; let 
En = {a} and En−2 = {d} and En−1 = X (the rest of the Ek don’t matter, but 
if we want to feel better about ourselves we can set them to X as well). Then 

P[Vn ∈ En | Vn−1 ∈ En−1] = P[Vn = a] = 1/6 

because the condition Vn−1 ∈ X says nothing. But of course if Vn−2 ∈ En−2 

(i.e. Vn−2 = d), there’s no way that Vn = a since you can’t reach it in time. So 

P[Vn ∈ En | Vk ∈ Ek for all k < n] = 0 =6 1/6 

5) This follows easily from the equation πT = πT P . If the chain is not 
irreducible, that does not alter the previous statement, so it remains true. 
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