6.436J/15.085J	Fall 2018
Problem Set 11	

Readings:

Notes from Lecture 21,22 Chapter 7 of Bertsekas and Tsitsiklis "Introduction to Probability" For *stopping times*: [Cinlar] Chapter V.1. [GS] Chapter 6

Exercise 1. A particle performs a random walk on the vertex set of a finite connected undirected graph G, which for simplicity we assume to have neither self-loops nor multiple edges. At each stage it moves to a neighbor of its current position, each such neighbor being chosen with equal probability. If G has η edges, show that the stationary distribution is given by $\pi_v = d_v/(2\eta)$, where d_v is the degree of each vertex v.

Solution: One way to do this problem is to simply check that the proposed solution satisfies the defining equations: $\pi P = \pi$, and $\sum_{v} \pi_{v} = 1$ (we can see immediately that we have nonnegativity). We have:

$$\sum_{v} \pi_{v} = \sum_{v} \frac{d_{v}}{2\eta}$$
$$= \frac{1}{2\eta} \sum_{v} d_{v}$$
$$= 1,$$

since the sum of the degrees is twice the number of edges (each edge increases the sum of the degrees by exactly 2). Similarly, we can show that $\pi P = \pi$. Let us define δ_{vu} to be 1 if vertices u and v are adjacent, and 0 otherwise. Then, we have:

$$\sum_{v} \pi_{v} P_{vu} = \frac{1}{2\eta} \sum_{v} d_{v} \left(\frac{1}{d_{v}} \delta_{vu} \right)$$
$$= \frac{1}{2\eta} \sum_{v} \delta_{vu}.$$

But $\sum_{v} \delta_{vu}$ is the number of edges incident to node u, that is, $\sum_{v} \delta_{vu} = d_u$. Therefore we have:

$$\sum_{v} \pi_v P_{vu} = \frac{1}{2\eta} d_u = \frac{d_u}{2\eta} = \pi_u.$$

Exercise 2. A particle performs a random walk on a bow tie ABCDE drawn on Figure 1, where C is the knot. From any vertex, its next step is equally likely to be to any neighbouring vertex. Initially it is at A. Find the expected value of:

- (a) The time of first return to A.
- (b) The number of visits to D before returning to A.
- (c) The number of visits to C before returning to A.
- (d) The time of first return to A, given that there were no visits to E before the return to A.
- (e) The number of visits to D before returning to A, given that there were no visits to E before the return to A.

Figure 1: A bow tie graph.

Solution: First, we can compute that the steady state distribution is $\pi_A = \pi_B = \pi_D = \pi_E = 1/6$, and $\pi_C = 1/3$. We can do this either by solving a system of linear equations (as usual) or just use our result from the first problem above.

(a) By the result from class, and on the handout, we have: $t_A = 1/\pi_A = 6$. Alternatively, we can solve the following system of equations (observe than t_A appears in only one equation):

$$t_A = \frac{1}{2}(t_B + 1) + \frac{1}{2}(t_C + 1)$$

$$t_B = \frac{1}{2} + \frac{1}{2}(t_C + 1)$$

$$t_C = \frac{1}{4} + \frac{1}{4}(t_B + 1) + \frac{1}{4}(t_D + 1) + \frac{1}{4}(t_E + 1)$$

$$t_D = \frac{1}{2}(t_C + 1) + \frac{1}{2}(t_E + 1)$$

$$t_E = \frac{1}{2}(t_C + 1) + \frac{1}{2}(t_D + 1).$$

(b) By the result from the handout on Markov Chains, we know that

$$\pi_D = \frac{\mathbb{E}[\# \text{ transitions to } D \text{ in a cycle that starts and ends at } A]}{\mathbb{E}[\# \text{ transitions in a cycle that starts and ends at } A]},$$

from which we find that the quantity we wish to compute is $6\pi_D = 1$.

- (c) Using the same method as in part (b), we find the answer to be $6\pi_C = 2$.
- (d) We let $\mathbb{P}_i(\cdot) = \mathbb{P}(\cdot|X_0 = i)$, and let T_j be the time of the first passage to state j, and let $\nu_i = \mathbb{P}_i(T_A < T_E)$. Then, as we obtained the equations above, that is, by conditioning on the first step, we have

$$\begin{split} \nu_A &= \frac{1}{2}\nu_B + \frac{1}{2}\nu_C \\ \nu_B &= \frac{1}{2} + \frac{1}{2}\nu_C \\ \nu_C &= \frac{1}{4} + \frac{1}{4}\nu_B + \frac{1}{4}\nu_D \\ \nu_D &= \frac{1}{2}\nu_C. \end{split}$$

Solving these, we find: $\nu_A = 5/8$, $\nu_B = 3/4$, $\nu_C = 1/2$, $\nu_D = 1/4$. Now we can compute the conditional transition probabilities, which we call τ_{ij} . We have:

$$\tau_{AB} = \mathbb{P}_A(X_1 = B | T_A < T_E)$$

=
$$\frac{\mathbb{P}_A(X_1 = B) \mathbb{P}_B(T_A < T_E)}{\mathbb{P}_A(T_A < T_E)}$$

=
$$\frac{\nu_B}{2\nu_A} = \frac{3}{5}.$$

Similarly, we find: $\tau_{AC} = 2/5$, $\tau_{BA} = 2/3$, $\tau_{BC} = 1/3$, $\tau_{CA} = 1/2$, $\tau_{CB} = 3/8$, $\tau_{CD} = 1/8$, $\tau_{DC} = 1$. Now we have essentially reduced to a problem like part (a). We can compute the conditional expectation by solving a system of linear equations using the new transition probabilities:

$$\begin{split} \tilde{t}_A &= 1 + \frac{3}{5} \tilde{t}_B + \frac{2}{5} \tilde{t}_C \\ \tilde{t}_B &= 1 + \frac{2}{3} (1) + \frac{1}{3} \tilde{t}_C \\ \tilde{t}_C &= 1 + \frac{1}{2} (1) + \frac{3}{8} \tilde{t}_B + \frac{1}{8} \tilde{t}_D \\ \tilde{t}_D &= 1 + \tilde{t}_C. \end{split}$$

Solving these equations, yields $\tilde{t}_A = 14/5$.

(e) We can use the conditional transition probabilities above, to reduce to a problem essentially like that in part (b). Let N be the number of visits to D. Then, denoting by η_i the expected value of N given that we start at i, and that $T_A < T_E$, we have the equations:

$$\begin{split} \eta_A &= \frac{3}{5}\eta_B + \frac{2}{5}\eta_B \\ \eta_B &= 0 + \frac{1}{3}\eta_C \\ \eta_C &= 0 + \frac{3}{8}\eta_B + \frac{1}{8}(1 + \eta_D) \\ \eta_D &= \eta_C. \end{split}$$

Solving, we obtain: $\eta_A = 1/10$.

Exercise 3. Let $(\Omega, \mathcal{F}) = (\mathbb{R}^{\infty}, \mathcal{B}^{\infty})$, $X_k(\omega) = \omega_k$, $k \in \mathbb{N}$, be the canonical coordinate functions and $\{\mathcal{F}_k\}$ a filtration of \mathcal{F} . Recall that a filtration is a sequence of increasing σ -algebras $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \cdots$ contained in $\mathcal{F}, \mathcal{F}_k \subset \mathcal{F}$. We say that τ is a stopping time of the filtration $\{\mathcal{F}_k\}$ if

- (a) τ is a positive integer
- (b) for every $k \ge 1$ we have $\{\tau \le k\} \in \mathcal{F}_k$

Let $\tau : \Omega \to \mathbb{N}$ be $(\mathcal{F}, \mathcal{B})$ measurable. Show that τ is a stopping of $\{\mathcal{F}_k\}$ if and only if for every $\omega, \omega' \in \Omega$ and for every $n \ge 1$

$$\tau(\omega) = n, \ X_k(\omega) = X_k(\omega') \quad \forall 1 \le k \le n \quad \Rightarrow \quad \tau(\omega') = n.$$
(1)

Solution: A positive integer valued random variable τ is a stopping time if and only if $\{\tau = n\} \in \mathcal{F}_n$ for all n. The forward direction follows from $\{\tau \leq n\} = \bigcup_{k=1}^n \{\tau = k\}$ and the reverse direction follows from $\{\tau = n\} = \{\tau \leq n\} \setminus \{\tau \leq n-1\}$. The relation $\omega \sim \omega'$ if

$$X_k(\omega) = X_k(\omega') \quad 1 \le k \le n$$

is an equivalence relation, i.e. reflexive, symmetric, and transitive. For all $E \subset \Omega$ define

$$[E]_n = \{ \omega \in \Omega \mid \exists \, \omega' \in E \text{ s.t. } \omega' \stackrel{n}{\sim} \omega \}$$

Condition 1 is equivalent to $[\{\tau = n\}]_n \subset \{\tau = n\}$. Therefore, it suffices to show that, for all $n, \{\tau = n\} \in \mathcal{F}_n$ if and only if $[\{\tau = n\}]_n \subset \{\tau = n\}$.

Suppose τ is a stopping time. Let

$$\mathcal{D} = \{ E \subset \Omega \mid [E]_n \subset E \}.$$

By definition, \mathcal{D} contains the empty set and sets of the form $X_j^{-1}(B)$ for $B \subset \mathbb{R}$ and $1 \leq j \leq n$. Moreover, let $\{E_j\} \in \mathcal{D}$, then

$$\left[\bigcup_{j=1}^{\infty} E_j\right]_n = \bigcup_{j=1}^{\infty} \left[E_j\right]_n \qquad \left[\bigcap_{j=1}^{\infty} E_j\right]_n \subset \bigcap_{j=1}^{\infty} \left[E_j\right]_n,$$

and therefore, \mathcal{D} is a monotone class. Let

$$\mathcal{C} = \{X_j^{-1}(B) \mid B \in \mathcal{B}, \ 1 \le j \le n\}.$$

Then, the minimal algebra containing $\mathcal{C} \alpha(\mathcal{C})$ is the set of finite unions of finite intersections of sets of the form $X_j^{-1}(B)$ or $X_j^{-1}(B)^c$. As the inverse image respects complements and \mathcal{D} is closed under intersections and unions, \mathcal{D} contains $\alpha(\mathcal{C})$ and by the monotone class theorem $\mathcal{D} \supset \sigma(\mathcal{C}) = \mathcal{F}_n$. Hence $\{\tau = n\} \in \mathcal{D}$.

Conversely, suppose that condition 1 is satisfied. By definition, $[\{\tau = n\}]_n \supset \{\tau = n\}$ and thusly $[\{\tau = n\}]_n = \{\tau = n\}$. Therefore, Ω decomposes as a union of equivalence classes $\Omega = \bigcup_{\alpha \in I} U_\alpha$, for some indexing set I where $[U_\alpha]_n = U_\alpha$ for all α and $U_\alpha \cap U_\beta = \emptyset$ for $\alpha \neq \beta$. For each $\alpha \in I$ choose a representative $\omega_\alpha \in U_\alpha$. Let $f : \Omega \to \Omega$ with $f_{|U_\alpha} \equiv \omega_\alpha$. To show that f is measurable it suffices to check on a generating collection. Let $S \subset \mathcal{N}$ be a finite set and $B = \prod_{s \in S} B_s$ with $B_s \in \mathcal{B}(\mathbb{R})$, then $f^{-1}(B) = \bigcap_{k=1}^n X_k^{-1}(X_k(B)) \in \mathcal{F}_n$ since $X_k(B)$ is either B_k or \emptyset and X_k is measurable. Therefore, f is $(\mathcal{F}_n, \mathcal{F})$ measurable and, as $[\{\tau = n\}]_n = \{\tau = n\}$ and τ is $(\mathcal{F}, \mathcal{B})$ measurable, $\{\tau = n\} = f^{-1}(\{\tau = n\}) \in \mathcal{F}_n$. Hence τ is a stopping time.

Exercise 4. Let τ be a stopping time of a filtration \mathcal{F}_n . Recall that the σ -algebra \mathcal{F}_{τ} of "past until τ " is defined as

$$\mathcal{F}_{\tau} = \{ E : E \cap \{ \tau \le n \} \in \mathcal{F}_n \quad \forall n \}$$

Show that for every random variable V measurable with respect to \mathcal{F}_{τ} there exists a stochastic process $\{G_n, n = 1, ...\}$, with G_n measurable with respect to \mathcal{F}_n , such that

 $V = G_{\tau}$.

(Hint: First consider simple V).

Solution: Let V be a random variable measurable with respect to \mathcal{F}_{τ} . Then V decomposes as

$$V = V \mathbb{1}\{V > 0\} + V \mathbb{1}\{V = 0\} - (-V) \mathbb{1}\{V < 0\} = V_{+} - V_{-}$$

Let $G_n = V \mathbb{1} \{ \tau \leq n \}$. Then $G_\tau = V$ and

$$G_n = V_+ \mathbb{1}\{\tau \le n\} - V_- \mathbb{1}\{\tau \le n\}.$$

As random variables are closed under addition and scalar multiplication, it suffices to show that G_n is measurable with respect to \mathcal{F}_n for positive V. If V > 0then $G_n \ge 0$. Let $x \ge 0$. Then

$$\{G_n > x\} = \{V\mathbb{1}\{\tau \le n\} > x\} = \{V > x\} \cap \{\tau \le n\} \in \mathcal{F}_n$$

since V is measurable with respect to \mathcal{F}_{τ} . As $\{(x, \infty)\}$ is a generating p-system for the Borel sigma algebra on the real numbers, G_n is measurable with respect to \mathcal{F}_n .

Exercise 5. (Cover time of C_n) For a MC with state space \mathcal{X} we define τ_{cov} to be the first time that every element of \mathcal{X} was visited. The covering time $t_{cov} = \max_{x \in \mathcal{X}} \mathbb{E}^x[\tau_{cov}]$. Consider a MC that is a simple random walk on an *n*-cycle: it moves with probability 1/2 to one of the neighbors each time. Show that $t_{cov}(n) = \frac{n(n-1)}{2}$ (Lovász'93). (Hint: Let τ_n be the first time a simple random walk on \mathbb{Z} started at 0 visits *n* distinct states. Relate to t_{cov} and gambler's ruin.)

Solution: Clearly, by symmetry, it does not matter what vertex we start from. Let us define σ_k to be the first time that at least k distinct vertices have been visited; obviously $\sigma_1 = 0$. We now note that $t_{cov} = \mathbb{E}[\sigma_n]$; we can also telescope these like so:

$$\sigma_n = (\sigma_n - \sigma_{n-1}) + (\sigma_{n-1} - \sigma_{n-2}) + \dots + (\sigma_2 - \sigma_1)$$

(note that we omit the " $\cdots + \sigma_1$ " because it's just 0). This of course means that $t_{cov} = \sum_{k=1}^{n-1} \mathbb{E}[\sigma_{k+1} - \sigma_k]$ (by linearity).

Now let us examine what the situation is like at time σ_k for k < n. We have k visited vertices, which obviously are contiguous (and so form a path); furthermore, X_{σ_k} must be at an endpoint of the path since by definition of σ_k , it must be the first visit we made to this vertex.

Now we ask: how long from then until σ_{k+1} ? Well, we have a Gambler's Ruin problem: exiting either end of the path of visited vertices gives us a new

one. To be precise, it's a Gambler's Ruin starting with 1 dollar and ending either with 0 dollars or k + 1 dollars; we know that the expected number of steps for this is j(k + 1 - j) where j = 1, which gives k steps. Therefore,

$$\mathbb{E}[\sigma_{k+1} - \sigma_k] = k$$

Plugging this in to the above, we get

$$t_{cov} = \sum_{k=1}^{n-1} \mathbb{E}[\sigma_{k+1} - \sigma_k] = \sum_{k=1}^{n-1} k = \frac{n(n-1)}{2}$$

Exercise 6. (*Last visited vertex of* C_n) Consider a simple random walk X_t on an n-cycle C_n and let τ_{cov} be the first time that every vertex was visited. Show that given that $X_0 = v$ the distribution of $X_{\tau_{cov}}$ is uniform on $\{v\}^c$. (Hint: Notice that to have $X_{\tau_{cov}} = k$ the random walk should visit the states k - 1 and k + 1 before k.)

Fun fact: cycles and cliques are the only graphs with this property (Lovász-Winkler'93).

Solution: Fix a vertex x; let σ_x be the first time that a *neighbor* of x is visited. For $x \neq v$, obviously a neighbor of x must be visited before x is (keeping in mind that v itself could be this neighbor). Let $u = X_{\sigma_u}$ (the first neighbor visited) and w be the other neighbor, which by definition has not been visited by time σ_x .

Now note that if x is visited before w, then x cannot be the last vertex, i.e. $X_{\tau_{cov}} \neq x$; but if w is visited before x, then every other vertex must have also been visited before x since there is no way to get from u to w without either passing through x or passing through literally every other vertex.

Finally, note that this is simply a Gambler's Ruin problem - where the gambler starts with 1 dollar (since u is next to x) and wins if he gets to n - 1 dollars (since w is the target). The probability of winning is just $\frac{1}{n-1}$. Since this holds regardless of what x is (provided $x \neq v$ of course) we get that every non-v vertex has an equal probability of being the final vertex.

(Sanity check: The probabilities should sum up to 1, which they do because there are n-1 non-starting vertices, each with $\frac{1}{n-1}$ probability of being the last visited.)

Exercise 7. Let B_k be iid with law $\mathbb{P}[B_k = +1] = p = 1 - \mathbb{P}[B_k = -1]$. Answer the following:

• Let $X_n = B_n B_{n+1}$, $n \ge 0$. Is it Markov? If yes, find its transition kernel.

- Let $Y_n = \frac{1}{2}(B_n B_{n-1})$, $n \ge 1$. Is it Markov? If yes, find its transition kernel.
- Let $Z_n = |\sum_{k=1}^n B_k|$, $n \ge 1$. Is it Markov? If yes, find its transition kernel.
- If {V_i, i ≥ 0} is a Markov process with state space X, and E_j are some subsets of X, is it true that

$$\mathbb{P}[V_n \in E_n | V_{n-1} \in E_{n-1}, V_{n-2} \in E_{n-2}, \dots, V_0 \in E_0] = \mathbb{P}[V_n \in E_n | V_{n-1} \in E_{n-1}],$$

provided that $\mathbb{P}[V_{n-1} \in E_{n-1}, ..., V_0 \in E_0] > 0$?

• Suppose that P(x, y) is a kernel of an irreducible Markov chain. If $P(\cdot, x_1) = P(\cdot, x_2)$ show that $\pi(x_1) = \pi(x_2)$, where π is a stationary distribution. What if the chain is not irreducible?

Solution:

1) It is not Markov (a couple exceptions, listed at the end). Let p = 0.99, and consider $\mathbb{P}[X_3 = 1 | X_2 = -1]$. Note that $X_2 = -1$ means either $B_2 = -1$ and $B_3 = 1$ or vice versa; and (given no other information) these two cases are equally probable. So no matter what B_4 happens to be, $\mathbb{P}[X_3 = 1 | X_2 = -1] = 1/2$. But now suppose that we add the information that $X_1 = -1$ as well. If $X_1 = X_2 = -1$, then we have one of the following two cases:

- 1. $(B_1, B_2, B_3) = (-1, 1, -1);$
- 2. $(B_1, B_2, B_3) = (1, -1, 1).$

Note that the second case is vastly more probable than the first; therefore,

$$\mathbb{P}[X_3 = 1 | X_2 = -1, X_1 = -1] > 1/2$$

(we could calculate it precisely using Baye's Theorem, but we don't really need to go to the trouble). Therefore $\{X_n\}$ does not satisfy the Markov property.

(**Remark:** The exceptions are when p = 1/2 or, if we'll allow such a thing, p = 0 or 1.)

2) Same as for 1 - a counterexample can be easily constructed, so it is not Markovian.

3) Yes it is Markov, although this is far from obvious. We'll be using the *reflection principle* to see this. First, note that if $Z_n = 0$, then $Z_{n+1} = 1$ for

sure, so that P(0,1) = 1; also note that Z_n can never move except by 1, so P(i,j) = 0 for all $|i - j| \neq 1$.

Now let's start with the difficult part. Since

$$Z_n = \sum_{k=1}^n B_n$$

it is obvious that P(i, j) = 0 if $j \neq i - 1, i + 1$. Furthermore, we can easily see that P(0, 1) = 1 (and that this obviously does not depend on the history), and that Z_n can never be negative. Now we just have to examine P(i, i + 1) (noting that P(i, i - 1) = 1 - P(i, i + 1).

We define $W_n := \sum_{k=1}^n B_k$. Now note that if we know whether W_n is positive or negative, we could immediately determine $\mathbb{P}[Z_{n+1} = Z_n + 1]$ – it would be p if $W_n > 0$, and 1 - p if $W_n < 0$ – and therefore the transition probabilities would only be determined by the current position Z_n .

Now suppose that $Z_k = z_k$ for all k = 0, 1, ..., n, and $z_n = \ell$ (the current state). Then we can define a *possible history* of W_k 's as a sequence $\mathbf{w} = (w_0, w_1, ..., w_n)$ such that

- $w_k \in \{-z_k, z_k\}$ (so that $|w_k| = z_k$) for all k;
- $|w_k w_{k-1}| = 1$ for all k = 1, 2, ..., n.

Define S to be the set of all such sequences (and obviously it is finite); define

$$S_{-} := \{ \mathbf{w} \in S : w_{n} = -\ell \} \text{ and } S_{+} := \{ \mathbf{w} \in S : w_{n} = \ell \}$$

Note the following:

- this is a partition of S every $\mathbf{w} \in S$ is in exactly one of S_{-}, S_{+} ;
- $|S_{-}| = |S_{+}|$ because for any $\mathbf{w} \in S_{-}$, we have $-\mathbf{w} \in S_{+}$ (this is the "reflection" we were talking about). So let's call

$$m := |S_{-}| = |S_{+}|$$

for any w ∈ S₋, we have ^{n-ℓ}/₂ increments (corresponding to B_k = 1) and ^{n+ℓ}/₂ decrements (corresponding to B_k = −1), and for any w ∈ S₊, we have ^{n+ℓ}/₂ increments and ^{n-ℓ}/₂ decrements. Therefore,

$$\mathbb{P}[W_k = w_k \text{ for all } k \le n] = \begin{cases} p^{\frac{n+\ell}{2}} (1-p)^{\frac{n-\ell}{2}} & \text{if } \mathbf{w} \in S_+ \\ p^{\frac{n-\ell}{2}} (1-p)^{\frac{n+\ell}{2}} & \text{if } \mathbf{w} \in S_- \end{cases}$$

Note that this only depends on the value of w_n .

Note, therefore, that

$$\mathbb{P}[Z_k = z_k \text{ for } k \le n] = \sum_{\mathbf{w} \in S} \mathbb{P}[W_k = w_k \text{ for } k \le n]$$

= $\sum_{\mathbf{w} \in S_+} \mathbb{P}[W_k = w_k \text{ for } k \le n] + \sum_{\mathbf{w} \in S_-} \mathbb{P}[W_k = w_k \text{ for } k \le n]$
= $\sum_{\mathbf{w} \in S_+} p^{\frac{n+\ell}{2}} (1-p)^{\frac{n-\ell}{2}} + \sum_{\mathbf{w} \in S_-} p^{\frac{n-\ell}{2}} (1-p)^{\frac{n+\ell}{2}}$
= $m \left(p^{\frac{n+\ell}{2}} (1-p)^{\frac{n-\ell}{2}} + p^{\frac{n-\ell}{2}} (1-p)^{\frac{n+\ell}{2}} \right)$
= $m (p(1-p))^{\frac{n-\ell}{2}} \left(p^{\ell} + (1-p)^{\ell} \right)$

Now we can apply Bayes' Theorem (remember that $z_n = \ell$ here):

$$\begin{split} \mathbb{P}[W_n = \ell \,|\, Z_k = z_k \text{ for } k \leq n] &= \mathbb{P}[\{W_k\} \in S_+ \,|\, Z_k = z_k \text{ for } k \leq n] \\ &= \frac{\mathbb{P}[\{W_k\} \in S_+] \cdot \mathbb{P}[Z_k = z_k \text{ for } k \leq n]}{\mathbb{P}[Z_k = z_k \text{ for } k \leq n]} \\ &= \frac{\mathbb{P}[\{W_k\} \in S_+]}{\mathbb{P}[Z_k = z_k \text{ for } k \leq n]} \\ &= \frac{m(p(1-p))^{\frac{n-\ell}{2}}(p^\ell)}{m(p(1-p))^{\frac{n-\ell}{2}}(p^\ell + (1-p)^\ell)} \\ &= \frac{p^\ell}{p^\ell + (1-p)^\ell} \end{split}$$

(part of this was noting that $\mathbb{P}[Z_k = z_k | \{W_k\} \in S_+] = 1$ by definition of S_+). Note that this depends *only* on the value of $Z_n = \ell$, and not on any other Z_k 's or even on n – so therefore we can conclud that it is *Markovian*!.

Now we have to compute the transition kernel. We have:

$$\mathbb{P}[W_n = -\ell \,|\, Z_k = z_k \text{ for } k \le n] = 1 - \frac{p^\ell}{p^\ell + (1-p)^\ell} = \frac{(1-p)^\ell}{p^\ell + (1-p)^\ell}$$

Therefore (letting $z_n = \ell$ below), we get $\mathbb{P}[Z_{n+1} = \ell + 1 \,|\, Z_k = z_k$ for $k \leq n]$

$$= \mathbb{P}[Z_{n+1} = \ell + 1 \text{ and } W_n = \ell \mid Z_k = z_k \text{ for } k \le n]$$
$$+ \mathbb{P}[Z_{n+1} = \ell + 1 \text{ and } W_n = -\ell \mid Z_k = z_k \text{ for } k \le n]$$

Dealing with each piece here on its own, we get:

$$\begin{split} \mathbb{P}[Z_{n+1} &= \ell + 1 \text{ and } W_n = \ell \mid Z_k = z_k \text{ for } k \le n] \\ &= \mathbb{P}[Z_{n+1} = \ell + 1 \mid W_n = \ell \text{ and } Z_k = z_k \text{ for } k \le n] \cdot \mathbb{P}[W_n = \ell \mid Z_k = z_k \text{ for } k \le n] \\ &= p \cdot \mathbb{P}[W_n = \ell \mid Z_n = \ell] = \frac{p^{\ell+1}}{p^{\ell} + (1-p)^{\ell}} \end{split}$$

An analogous computation for the other piece gives

$$\mathbb{P}[Z_{n+1} = \ell + 1 \text{ and } W_n = -\ell \,|\, Z_k = z_k \text{ for } k \le n] = \frac{(1-p)^{\ell+1}}{p^{\ell} + (1-p)^{\ell}}$$

We then finally put all of this together to get

$$P(\ell, \ell+1) = \mathbb{P}[Z_{n+1} = \ell+1 \mid Z_n = \ell] = \frac{p^{\ell+1} + (1-p)^{\ell+1}}{p^{\ell} + (1-p)^{\ell}}$$

(and of course $P(\ell, \ell - 1) = 1 - \frac{p^{\ell+1} + (1-p)^{\ell+1}}{p^{\ell} + (1-p)^{\ell}}$). As noted at the very top, we have also P(0, 1) = 1 and P(i, j) = 0 for all $j \neq i + 1, i - 1$.

(**Remark:** A common error was to assume that because the answer differs depending on the history of the B_k 's, it cannot be Markov. But when evaluating whether the Z_n 's are Markov, you cannot look at the history of the B_k 's, only on the history of the Z_n 's.)

4) Not always. An easy example is a random walk on a 6-cycle (labeled in order a, b, c, d, e, f) with uniformly-randomly-chosen starting point V_0 ; let $E_n = \{a\}$ and $E_{n-2} = \{d\}$ and $E_{n-1} = \mathcal{X}$ (the rest of the E_k don't matter, but if we want to feel better about ourselves we can set them to \mathcal{X} as well). Then

$$\mathbb{P}[V_n \in E_n \mid V_{n-1} \in E_{n-1}] = \mathbb{P}[V_n = a] = 1/6$$

because the condition $V_{n-1} \in \mathcal{X}$ says nothing. But of course if $V_{n-2} \in E_{n-2}$ (i.e. $V_{n-2} = d$), there's no way that $V_n = a$ since you can't reach it in time. So

$$\mathbb{P}[V_n \in E_n \mid V_k \in E_k \text{ for all } k < n] = 0 \neq 1/6$$

5) This follows easily from the equation $\pi^T = \pi^T P$. If the chain is not irreducible, that does not alter the previous statement, so it remains true.

MIT OpenCourseWare <u>https://ocw.mit.edu</u>

6.436J / 15.085J Fundamentals of Probability Fall 2018

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>