MIT OpenCourseWare
http://ocw.mit.edu

6.189 Multicore Programming Primer, January (IAP) 2007

Please use the following citation format:

Rodric Rabbah, 6.189 Multicore Programming Primer, January (IAP)
2007. (Massachusetts Institute of Technology: MIT OpenCourseWare).
http://ocw.mit.edu (accessed MM DD, YYYY). License: Creative
Commons Attribution-Noncommercial-Share Alike.

Note: Please use the actual date you accessed this material in your citation.

For more information about citing these materials or our Terms of Use, visit:
http://ocw.mit.edu/terms

http://ocw.mit.edu
http://ocw.mit.edu
http://ocw.mit.edu/terms

6.189 IAP 2007

Lecture’/

Design Patterns for
Parallel Programming ||

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 1 6.189 IAP 2007 MIT

Recap: Common Steps to Parallelization

Partitioning

|
d a 0 m
c O c
_ P
0 - > h p
nO : : ek
P LoD : ;
— 0 — M _t g ‘ 9 o
s O e r o
i - n a
- P2 [P
t t t
- 20O i
)
0 (0]
o - n
Sequential Tasks Execution Parallel Processors
computation Units Program

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 2 6.189 IAP 2007 MIT

Recap: Decomposing for Concurrency

MPEG Decoder MPEGTStream o ’/\
— 55— e Task decomposition
macroblocks, motion vectors
o) = Parallelism in the application
m%%ﬁggﬁ)%ﬁg coded differentially coded
-~ \motion vectors \
[ZigZag] 3 %
(o] o Data decomposition
[Repear | = Same computation many data

spatially encoded macroblockWn vectors

e Pipeline decomposition

[e]]] = Data assembly lines

e = Producer-consumer chains
recovered picture

A
[Picture Reorder] m.

v

[Color Conversion]
v

[Display]

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 3 6.189 IAP 2007 MIT

Dependence Analysis

e Given two tasks how to determine if they can safely
run in parallel?

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 4 6.189 IAP 2007 MIT

Bernstein’s Condition

e R: set of memory locations read (input) by task T,
° W: set of memory locations written (output) by task T,

e Two tasks T, and T, are parallel if
= inputto T, is not part of output from T,
= inputto T, is not part of output from T,
= outputs from T, and T, do not overlap

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007) 6.189 IAP 2007 MIT

Example

Ty Ts

a=x+y b =x + z
Ry ={x.y} R, ={x 2z}
w, ={ a} W, ={b}

RlﬂW2:¢
RzﬂVV1:¢
V\/lﬂW2:¢

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 6 6.189 IAP 2007 MIT

Patterns for Parallelizing Programs

4 Design Spaces

Algorithm Expression Software Construction
e Finding Concurrency e Supporting Structures
s EXpose concurrent = Code and data structuring
tasks patterns
e Algorithm Structure e Implementation Mechanisms
= Map tasks to units of = Low level mechanisms used
execution to exploit to write parallel programs

parallel architecture

Patterns for Parallel
Programming. Mattson,
Sanders, and Massingill
(20095).

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 7 6.189 IAP 2007 MIT

Algorithm Structure Design Space

e Given a collection of concurrent tasks, what’s the
next step?
e Map tasks to units of execution (e.g., threads)

e Important considerations
= Magnitude of number of execution units platform will
support
= Cost of sharing information among execution units
= Avoid tendency to over constrain the implementation

- Work well on the intended platform
— Flexible enough to easily adapt to different architectures

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 8 6.189 IAP 2007 MIT

Major Organizing Principle

e How to determine the algorithm structure that
represents the mapping of tasks to units of
execution?

e Concurrency usually implies major organizing
principle
= Organize by tasks
= Organize by data decomposition
= Organize by flow of data

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 9 6.189 IAP 2007 MIT

Organize by Tasks?

yes

v

Recursive? Divide and Conquer

no

v

Task
Parallelism

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 10 6.189 IAP 2007 MIT

Task Parallelism

e Ray tracing
= Computation for each ray is a separate and independent

e Molecular dynamics
= Non-bonded force calculations, some dependencies

e Common factors
= Tasks are associated with iterations of a loop
= Tasks largely known at the start of the computation
= All tasks may not need to complete to arrive at a solution

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 11 6.189 IAP 2007 MIT

Divide and Conquer

e For recursive programs: divide and conquer
= Subproblems may not be uniform
= May require dynamic load balancing

subproblem

compute compute
subproblem subproblem
subproblem

subproblem
compute compute

subproblem subproblem

subproblem

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 12 6.189 IAP 2007 MIT

Organize by Data?

e Operations on a central data structure
= Arrays and linear data structures
= Recursive data structures

. yes
Recursive? > Recursive Data

no

v

Geometric
Decomposition

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 13 6.189 IAP 2007 MIT

Geometric Decomposition

e Gravitational body

SImU|atOr VEC3D acc[NUM BODI ES] = O0;
for (i =0; i < NUMBODIES - 1; i++) {
= Calculate force for (j =i +1; | < NUMBODIES; j++) {
. /| Displacenent vector
between pairs of UEED | = s] — e
. Force
objects and update t =1/ sqr(length(d)):
. /1 Conponents of force al ong di spl acenent
accelerations d=t * (d/ length(d));
acc[i] +=d * mass[]j];
} acc[j] += -d * mass[i];
}
pos
pos
vel

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 14 6.189 IAP 2007 MIT

Recursive Data

e Computation on a list, tree, or graph

= Often appears the only way to solve a problem is to
sequentially move through the data structure

e There are however opportunities to reshape the
operations in a way that exposes concurrency

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 15 6.189 IAP 2007 MIT

Recursive Data Example: Find the Root

e Given a forest of rooted directed trees, for each
node, find the root of the tree containing the node

= Parallel approach: for each node, find its successor’s
successor, repeat until no changes

—- O(log n) vs. O(n)

@ @

O O
5 o5

H o I 0@

5 @ 5 @

Step 1 Step 2

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 16 6.189 IAP 2007 MIT

Work vs. Concurrency Tradeoff

e Parallel restructuring of find the root algorithm leads
to O(n log n) work vs. O(n) with sequential approach

e Most strategies based on this pattern similarly trade
off increase in total work for decrease in execution
time due to concurrency

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 17 6.189 |IAP 2007 MIT

Organize by Flow of Data?

e |[n some application domains, the flow of data
Imposes ordering on the tasks

= Regular, one-way, mostly stable data flow
= Irregular, dynamic, or unpredictable data flow

yes
Regular? > Pipeline

no

\ 4

Event-based
Coordination

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 18 6.189 IAP 2007 MIT

Pipeline Throughput vs. Latency

e Amount of concurrency in a pipeline is limited by the
number of stages

e Works best if the time to fill and drain the pipeline is
small compared to overall running time

e Performance metric is usually the throughput

= Rate at which data appear at the end of the pipeline per
time unit (e.qg., frames per second)

e Pipeline latency is important for real-time
applications

= [ime interval from data input to pipeline, to data output

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 19 6.189 IAP 2007 MIT

Event-Based Coordination

e In this pattern, interaction of tasks to process data
can vary over unpredictable intervals

e Deadlocks are likely for applications that use this
pattern

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 20 6.189 IAP 2007 MIT

6.189 IAP 2007

Supporting Structures
= SPMD

= Loop parallelism

= Master/Worker

= Fork/Join

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 21 6.189 IAP 2007 MIT

SPMD Pattern

e Single Program Multiple Data: create a single
source-code image that runs on each processor

= Initialize
= ODbtain a unique identifier

= Run the same program each processor
— ldentifier and input data differentiate behavior

s Distribute data
s Finalize

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 22 6.189 IAP 2007 MIT

Example: Parallel Numerical Integration

4 0 static long num steps = 100000;
(1+x2) voi d mai n()
{
int 1 ;
doubl e pi, x, step, sum = 0.0;
step = 1.0 / (double) num steps;
for (i = 0; i < numsteps; i++){
= (1 + 0.5) = step;
sum=sum+ 4.0/ (1.0 + x*x);
}
pi = step * sum
printf(“Pi = %\n", pi);
}

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 23 6.189 IAP 2007 MIT

Computing Pi1 With Integration (MPI)

static |l ong num steps = 100000;

void mai n(int argc, char* argv|[])

{
int i _start, i _end, i, nyid, nunprocs;
double pi, nypi, x, step, sum = 0.0;

MPI _Init(&argc, &argv);
MPI _Comm si ze(MPI _ CCNNIWDRLD &nunpr ocs) ;
MPI _Conm r ank(MPI _COVM WORLD, &nyi d);

MPI _BCAST(&um steps, 1, MPI _INT, 0, MPI _COVM WORLD);
| _start = ny_id * (num steps/ nunprocs)

| _end =i _start + (num steps/nunprocs)

step = 1.0 / (double) num steps;

for (i =1 _start; i <1 _end; i++) {
x = (i + 0. 5) * Step
sum=sum+ 4.0/ (1.0 + x*x);

}
nypi = step * sum

MPI _REDUCE(&ypi, &pi, 1, MPI_DOUBLE, MPI _SUM 0, MPI _COVM WORLD);

if (myid == 0)
printf(“Pi = %\n", pi);
MPI _Finalize();
}

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 24 6.189 IAP 2007 MIT

Block vs. Cyclic Work Distribution

static |l ong num steps = 100000;

void mai n(int argc, char* argv|[])

{
int i _start, i_end, i, nyid, nunprocs;
double pi, nypi, x, step, sum = 0.0;

MPI _Init(&argc, &argv);
MPI _Comm si ze(MPI _COVM WORLD, &nunprocs);
MPI _Conm r ank(MPI _COVWM WORLD, &nyi d);

MPI _BCAST(&um steps, 1, MPI_INT, 0, MPI_COVW WORLD) ;

| _start = ny_id * (num steps/ nunprocs)
| _end =i _start + (num steps/nunprocs)

step = 1.0 / (double) num steps;

for (i nyid; i < numsteps; i += nunprocs) {
X (i + 0.5) * step
sum=sum+ 4.0/ (1.0 + x*x);

}
nypi = step * sum

MPI _REDUCE(&ypi, &pi, 1, MPI_DOUBLE, MPI _SUM 0, MPI _COVM WORLD);

if (myid == 0)
printf(“Pi = 9%\n", pi);
MPI _Finalize();
}

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 25 6.189 IAP 2007 MIT

SPMD Challenges

e Split data correctly
e Correctly combine the results
e Achieve an even distribution of the work

e For programs that need dynamic load balancing, an
alternative pattern is more suitable

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 26 6.189 IAP 2007 MIT

Loop Parallelism Pattern

e Many programs are expressed using iterative

constructs

= Programming models like OpenMP provide directives to
automatically assign loop iteration to execution units

= Especially good when code cannot be massively

restructured

#pragma onp parall el

for

for(i =0; 1 < 12; 1++4)
qi] = Ai] +Bli];

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

~N o o b~

I I I I
w N B, O

27 6.189 IAP 2007 MIT

Master/Worker Pattern

master

worker worker worker worker

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 28 6.189 IAP 2007 MIT

Master/Worker Pattern

e Particularly relevant for problems using task
parallelism pattern where task have no
dependencies

= Embarrassingly parallel problems

e Main challenge in determining when the entire
problem is complete

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 29 6.189 IAP 2007 MIT

Fork/Join Pattern

e Tasks are created dynamically
m |asks can create more tasks

e Manages tasks according to their relationship

e Parent task creates new tasks (fork) then waits until
they complete (join) before continuing on with the
computation

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 30 6.189 IAP 2007 MIT

6.189 IAP 2007

Communication Patterns
= Point-to-point
s Broadcast
= Reduction

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 31 6.189 IAP 2007 MIT

Serial Reduction

AL O] Al 1]

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Al 2]

Al 3]

e \When reduction

operator is not

associative

e Usually followed by a
broadcast of result

32

6.189 IAP 2007 MIT

Tree-based Reduction

Al O] Al 1] Al 2] Al 3]
Al 0: 1] A[2 3]
A[O 3]

e n steps for 2" units of execution
e \When reduction operator is associative
e Especially attractive when only one task needs result

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 33 6.189 IAP 2007 MIT

Recursive-doubling Reduction

Al 0] Al 1] Al 2] Al 3]
N 49 D D
Al 0: 1] Al 0: 1] Al 2: 3] Al 2: 3]
S ER
\ 4 \ 4 A 4 v
Al 0: 3] Al 0: 3] Al 0: 3] Al 0: 3]

e n steps for 2" units of execution
e If all units of execution need the result of the reduction

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 34 6.189 IAP 2007 MIT

Recursive-doubling Reduction

e Better than tree-based approach with broadcast

= Each units of execution has a copy of the reduced valut
at the end of n steps
= |In tree-based approach with broadcast

- Reduction takes n steps
- Broadcast cannot begin until reduction is complete
- Broadcast takes n steps (architecture dependent)

—~ O(n) vs. O(2n)

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 35 6.189 IAP 2007 MIT

6.189 IAP 2007

Summary

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 36 6.189 IAP 2007 MIT

Algorithm Structure and Organization

Task Divide Geometric Recursive | Pipeline | Event-based
parallelism | and decomposition | data coordination
conquer
SPMD %%k %% %% % %%k %% e %% % o
Loop %% %% e %%k %
Parallelism
Master/ *k*%k * % * * * % %% *
Worker
JFOTK/ e %% % % e %% %% %% % %
oin

e Patterns can be hierarchically composed so that a
program uses more than one pattern

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

37

6.189 IAP 2007 MIT

	Untitled
	Untitled

