
MIT OpenCourseWare
http://ocw.mit.edu

6.189 Multicore Programming Primer, January (IAP) 2007

Please use the following citation format:

Rodric Rabbah, 6.189 Multicore Programming Primer, January (IAP)
2007. (Massachusetts Institute of Technology: MIT OpenCourseWare).
http://ocw.mit.edu (accessed MM DD, YYYY). License: Creative
Commons Attribution-Noncommercial-Share Alike.

Note: Please use the actual date you accessed this material in your citation.

For more information about citing these materials or our Terms of Use, visit:
http://ocw.mit.edu/terms

http://ocw.mit.edu
http://ocw.mit.edu
http://ocw.mit.edu/terms

6.189 IAP 2007

Lecture7

Design Patterns for
Parallel Programming II

1 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Recap: Common Steps to Parallelization

Partitioning

P0 P1

P2 P3

p0 p1

p2 p3

p0 p1

p2 p3

d
e
c
o
m
p
o
s
i
t
i
o
n

a
s
s
i
g
n
m
e
n
t

o
r
c
h
e
s
t
r
a
t
i
o
n

m
a
p
p
i
n
g

Sequential Tasks Execution Parallel Processorscomputation Units Program

2 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Recap: Decomposing for Concurrency

MPEG Decoder

MPEG bit stream

join

IDCT

IQuantization

split

VLD
macroblocks, motion vectors

frequency encoded
macroblocks differentially coded

motion vectors

motion vectors spatially encoded macroblocks

ZigZag

Saturation

Motion Vector Decode

Repeat

● Task decomposition
• Parallelism in the application

● Data decomposition
• Same computation many data

● Pipeline decomposition
• Data assembly lines
• Producer-consumer chains

Motion
Compensation

recovered picture

Picture Reorder

Color Conversion

Display

3 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Dependence Analysis

● Given two tasks how to determine if they can safely
run in parallel?

4 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Bernstein’s Condition

● Ri: set of memory locations read (input) by task Ti

● Wj: set of memory locations written (output) by task Tj

● Two tasks T1 and T2 are parallel if
• input to T1 is not part of output from T2

• input to T2 is not part of output from T1

• outputs from T1 and T2 do not overlap

5 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Example

T1

a = x + y

T2

b = x + z

R1 = { x, y }
W1 = { a }

R2 = { x, z }
W2 = { b }

R1 IW2 =φ

R2 IW1 =φ

W1 IW2 =φ

6 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Patterns for Parallelizing Programs

4 Design Spaces

Algorithm Expression	 Software Construction

●	 Finding Concurrency ● Supporting Structures
•	 Expose concurrent • Code and data structuring

tasks patterns

●	 Algorithm Structure ● Implementation Mechanisms

•	 Map tasks to units of • Low level mechanisms used

execution to exploit to write parallel programs
parallel architecture

Patterns for Parallel
Programming. Mattson,
Sanders, and Massingill
(2005).

6.189 IAP 2007 MIT 7 Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Algorithm Structure Design Space

● Given a collection of concurrent tasks, what’s the
next step?

●	 Map tasks to units of execution (e.g., threads)

●	 Important considerations
•	 Magnitude of number of execution units platform will

support
•	 Cost of sharing information among execution units
•	 Avoid tendency to over constrain the implementation

–	 Work well on the intended platform
–	 Flexible enough to easily adapt to different architectures

6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 8	

Major Organizing Principle

● How to determine the algorithm structure that
represents the mapping of tasks to units of
execution?

● Concurrency usually implies major organizing
principle
• Organize by tasks
• Organize by data decomposition
• Organize by flow of data

6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 9

Organize by Tasks?

Recursive?

Task
Parallelism

yes

no

Divide and Conquer

0 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 1

Task Parallelism

● Ray tracing
• Computation for each ray is a separate and independent

● Molecular dynamics
• Non-bonded force calculations, some dependencies

● Common factors
• Tasks are associated with iterations of a loop
• Tasks largely known at the start of the computation
• All tasks may not need to complete to arrive at a solution

11 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Divide and Conquer

● For recursive programs: divide and conquer

• Subproblems may not be uniform
• May require dynamic load balancing

subproblem

compute
subproblem

compute
subproblem

subproblem

join

split

split subproblem

compute
subproblem

compute
subproblem

subproblem

join

split

problem

join

solution

6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 12

Organize by Data?

● Operations on a central data structure

• Arrays and linear data structures
• Recursive data structures

Recursive?

Geometric
Decomposition

yes

no

Recursive Data

6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 13

Geometric Decomposition

simulator
● Gravitational body

VEC3D acc[NUM_BODIES] = 0;

for (i = 0; i < NUM_BODIES - 1; i++) {
• Calculate force for (j = i + 1; j < NUM_BODIES; j++) {

// Displacement vector
between pairs of VEC3D d = pos[j] – pos[i];

// Force
t = 1 / sqr(length(d));objects and update
// Components of force along displacementaccelerations d = t * (d / length(d));

acc[i] += d * mass[j];
acc[j] += -d * mass[i];

}
}

pos

vel

pos

14 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Recursive Data

●	 Computation on a list, tree, or graph
•	 Often appears the only way to solve a problem is to

sequentially move through the data structure

● There are however opportunities to reshape the

operations in a way that exposes concurrency

6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 15	

Recursive Data Example: Find the Root

● Given a forest of rooted directed trees, for each
node, find the root of the tree containing the node
•	 Parallel approach: for each node, find its successor’s

successor, repeat until no changes
–	 O(log n) vs. O(n)

4

3

2

1 6

5 7

4

3

2

1 6

5 7

4

3

2

1 6

5 7

Step 1	 Step 2 Step 3

16	 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Work vs. Concurrency Tradeoff

● Parallel restructuring of find the root algorithm leads
to O(n log n) work vs. O(n) with sequential approach

● Most strategies based on this pattern similarly trade
off increase in total work for decrease in execution
time due to concurrency

17 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Organize by Flow of Data?

● In some application domains, the flow of data
imposes ordering on the tasks
• Regular, one-way, mostly stable data flow
• Irregular, dynamic, or unpredictable data flow

Regular?

Event-based
Coordination

yes

no

Pipeline

6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 18

Pipeline Throughput vs. Latency

● Amount of concurrency in a pipeline is limited by the
number of stages

● Works best if the time to fill and drain the pipeline is
small compared to overall running time

●	 Performance metric is usually the throughput
•	 Rate at which data appear at the end of the pipeline per

time unit (e.g., frames per second)

● Pipeline latency is important for real-time
applications
• Time interval from data input to pipeline, to data output

9	 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 1

Event-Based Coordination

● In this pattern, interaction of tasks to process data
can vary over unpredictable intervals

● Deadlocks are likely for applications that use this
pattern

20 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

6.189 IAP 2007

Supporting Structures

• SPMD
• Loop parallelism
• Master/Worker
• Fork/Join

21 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

SPMD Pattern

● Single Program Multiple Data: create a single
source-code image that runs on each processor
• Initialize
• Obtain a unique identifier
• Run the same program each processor

– Identifier and input data differentiate behavior
• Distribute data
• Finalize

22 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Example: Parallel Numerical Integration

4.0

2.0

4.0
(1+x2)

f(x) =
static long num_steps = 100000;

void main()
{

int i;
double pi, x, step, sum = 0.0;

step = 1.0 / (double) num_steps;
for (i = 0; i < num_steps; i++){

x = (i + 0.5) ∗ step;
sum = sum + 4.0 / (1.0 + x∗x);

}

pi = step ∗ sum;
0.0 X 1.0 printf(“Pi = %f\n”, pi);

}}

23 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Computing Pi With Integration (MPI)

static long num_steps = 100000;

void main(int argc, char* argv[])
{	

int i_start, i_end, i, myid, numprocs;
double pi, mypi, x, step, sum = 0.0;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &numprocs);

MPI_Comm_rank(MPI_COMM_WORLD, &myid);

MPI_BCAST(&num_steps, 1, MPI_INT, 0, MPI_COMM_WORLD);

i_start = my_id ∗ (num_steps/numprocs)

i_end = i_start + (num_steps/numprocs)

step = 1.0 / (double) num_steps;

for (i = i_start; i < i_end; i++) {

x = (i + 0.5) ∗ step

}
sum = sum + 4.0 / (1.0 + x∗x);

mypi = step * sum;

MPI_REDUCE(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

if (myid == 0)

printf(“Pi = %f\n”, pi);

MPI_Finalize();
}

6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 24	

Block vs. Cyclic Work Distribution

static long num_steps = 100000;

void main(int argc, char* argv[])
{	

int i_start, i_end, i, myid, numprocs;
double pi, mypi, x, step, sum = 0.0;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &numprocs);

MPI_Comm_rank(MPI_COMM_WORLD, &myid);

MPI_BCAST(&num_steps, 1, MPI_INT, 0, MPI_COMM_WORLD);

i_start = my_id ∗ (num_steps/numprocs)

i_end = i_start + (num_steps/numprocs)

step = 1.0 / (double) num_steps;

for (i = myid; i < num_steps; i += numprocs) {

x = (i + 0.5) ∗ step

}
sum = sum + 4.0 / (1.0 + x∗x);

mypi = step * sum;

MPI_REDUCE(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

if (myid == 0)

printf(“Pi = %f\n”, pi);

MPI_Finalize();
}

25	 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

SPMD Challenges

● Split data correctly

● Correctly combine the results

● Achieve an even distribution of the work

● For programs that need dynamic load balancing, an
alternative pattern is more suitable

26 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Loop Parallelism Pattern

● Many programs are expressed using iterative
constructs
•	 Programming models like OpenMP provide directives to

automatically assign loop iteration to execution units
•	 Especially good when code cannot be massively

restructured

#pragma omp parallel for
for(i = 0; i < 12; i++)

C[i] = A[i] + B[i];

i = 0

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 7

i = 8

i = 9

i = 10

i = 11

27	 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Master/Worker Pattern

master
 A
B D E

Independent Tasks

C

A
B

C

E
D

worker worker worker worker

28 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Master/Worker Pattern

● Particularly relevant for problems using task
parallelism pattern where task have no
dependencies
• Embarrassingly parallel problems

● Main challenge in determining when the entire
problem is complete

29 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Fork/Join Pattern

● Tasks are created dynamically
• Tasks can create more tasks

● Manages tasks according to their relationship

● Parent task creates new tasks (fork) then waits until
they complete (join) before continuing on with the
computation

6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 30

6.189 IAP 2007

Communication Patterns

• Point-to-point
• Broadcast
• Reduction

31 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Serial Reduction

A[1] A[2]

A[0:3]

A[3]

A[0:2]

A[0:1]

A[0]

● When reduction
operator is not
associative

● Usually followed by a

broadcast of result

32 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Tree-based Reduction

A[1] A[2]

A[0:3]

A[3]

A[2:3]A[0:1]

A[0]

● n steps for 2n units of execution
● When reduction operator is associative
● Especially attractive when only one task needs result

33 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Recursive-doubling Reduction

A[1] A[2]

A[0:3]

A[3]

A[2:3]A[0:1]

A[0]

A[0:1] A[2:3]

A[0:3] A[0:3] A[0:3]

● n steps for 2n units of execution
● If all units of execution need the result of the reduction

34 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Recursive-doubling Reduction

●	 Better than tree-based approach with broadcast
•	 Each units of execution has a copy of the reduced valut

at the end of n steps
•	 In tree-based approach with broadcast

–	 Reduction takes n steps
–	 Broadcast cannot begin until reduction is complete
–	 Broadcast takes n steps (architecture dependent)
–	 O(n) vs. O(2n)

35	 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

6.189 IAP 2007

Summary

6 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 3

Algorithm Structure and Organization
Task
parallelism

Divide
and
conquer

Geometric
decomposition

Recursive
data

Pipeline Event-based
coordination

SPMD **** *** **** ** *** **
Loop
Parallelism **** ** ***
Master/
Worker **** ** * * **** *
Fork/
Join ** **** ** **** ****

● Patterns can be hierarchically composed so that a
program uses more than one pattern

37 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

	Untitled
	Untitled

