6.172 Performance Engineering of Software Systems

Lecture 22 Graph Optimization
 Julian Shun

SPEED LIMIT

- What is a graph?
- Graph representations
- Implementing breadth-first search
- Graph compression/reordering

- Vertices model objects
- Edges model relationships between objects

Image courtesy of STRING. Used under CC-BY.

What is a graph?

- Edges can be directed
- Relationship can go one way or both ways

Image created by MIT OpenCourseWare.

What is a graph?

- Edges can be weighted
- Denotes "strength", distance, etc.

Distance between cities
Flight costs

© Scott Mitchell for Microsoft. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

What is a graph?

- Vertices and edges can have types and metadata

Google Knowledge Graph

© Third Door Media. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

SPEED LIMIT

SOME MORE APPLICATIONS OF GRAPHS

- Examples:
- Finding all your friends who went to the same high school as you
- Finding common friends with someone
- Social networks recommending people whom you might know
- Product recommendation

- Some applications
- Finding people with similar interests
- Detecting fraudulent websites
- Document clustering
- Unsupervised learning
- Finding groups of vertices that are "wellconnected" internally and "poorlyconnected" externally

More Applications

Connectomics

Image courtesy of Andreas Horn. Used under CC-BY.

- Study of the brain network structure

Image Segmentation
© NECSUS. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

- Pixels correspond to vertices
- Edges between neighboring pixels with weight corresponding to similarity

SPEED LIMIT

Graph Representations

- Vertices labeled from 0 to $\mathrm{n}-1$

Adjacency matrix
(" 1 " if edge exists, "0" otherwise)

Edge list

- What is the space requirement for each in terms of number of edges (m) and number of vertices (n)?
- Adjacency list
- Array of pointers (one per vertex)
- Each vertex has an unordered list of its edges

- What is the space requirement?
- Can substitute linked lists with arrays for better cache performance
- Tradeoff: more expensive to update graph
- Compressed sparse row (CSR)
- Two arrays: Offsets and Edges
- Offsets[i] stores the offset of where vertex i's edges start in Edges

- How do we know the degree of a vertex?
- Space usage?
- Can also store values on the edges with an additional array or interleaved with Edges
- What is the cost of different operations?

	Adjacency matrix	Edge list	Adjacency list	Compressed sparse row
Storage cost / scanning whole graph	$\mathrm{O}\left(\mathrm{n}^{2}\right)$	$\mathrm{O}(\mathrm{m})$	$\mathrm{O}(\mathrm{m}+\mathrm{n})$	$\mathrm{O}(\mathrm{m}+\mathrm{n})$
Add edge	$\mathrm{O}(1)$	O (1)	$\mathrm{O}(1) / \mathrm{O}(\operatorname{deg}(\mathrm{v})$)	$\mathrm{O}(\mathrm{m}+\mathrm{n})$
Delete edge from vertex v	$\mathrm{O}(1)$	O(m)	O(deg(v))	$\mathrm{O}(\mathrm{m}+\mathrm{n})$
Finding all neighbors of a vertex v	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}(\mathrm{m})$	O(deg(v))	O(deg(v))
Finding if w is a neighbor of v	$\mathrm{O}(1)$	$\mathrm{O}(\mathrm{m})$	O(deg(v))	O(deg(v))

- There are variants/combinations of these representations
- The algorithms we will discuss today are best implemented with compressed sparse row (CSR) format
- Sparse graphs
- Static algorithms-no updates to graph
- Need to scan over neighbors of a given set of vertices
- They can be big (but not too big)

Web graph
1.4 billion vertices
6.6 billion edges (38 GB)

Common Crawl

Web graph
3.5 billion vertices

128 billion edges (540 GB)

- Sparse (m much less than n^{2})
- Degrees can be highly skewed

Lady Gaga, Obama

Studies have shown that many real-world graphs have a power law degree distribution
\#vertices with deg. $d \approx a \times d^{-p}$
$(2<p<3)$

IMPLEMENTING A GRAPH ALGORITHM: BREADTH-FIRST SEARCH

- Given a source vertex s, visit the vertices in order of distance from s
- Possible outputs:
- Vertices in the order they were visited - D, B, C, E, A
- The distance from each vertex to s

A	B	C	D	E
2	1	1	0	1

- A BFS tree, where each vertex has a parent to a neighbor in the previous level

Serial BFS Algorithm

Breadth-First-Search(Graph, root):
for each node n in Graph:
n.distance $=$ INFINITY
n.parent = NIL

Source: https://en.wikipedia.org/wiki/Breadth-first_search

- Assume graph is given in compressed sparse row format
- Two arrays: Offsets and Edges
- n vertices and m edges (assume Offsets $[\mathrm{n}]=\mathrm{m}$)

```
int* parent =
    (int*) malloc(sizeof(int)*n);
int* queue =
    (int*) malloc(sizeof(int)*n);
```

```
for(int i=0; i<n; i++) {
```

for(int i=0; i<n; i++) {
parent[i] = -1;
parent[i] = -1;
}
}
queue[0] = source;
parent[source] = source;
int q_front = 0, q_back = 1;

- What is the most expensive part of the code?

```
```

//while queue not empty

```
//while queue not empty
```

//while queue not empty
while(q_front != q_back) {
while(q_front != q_back) {
int current = queue[q_front++]; //dequeue
int current = queue[q_front++]; //dequeue
int degree =
int degree =
Offsets[current+1]-Offsets[current];
Offsets[current+1]-Offsets[current];
for(int i=0;i<degree; i++) {
for(int i=0;i<degree; i++) {
int ngh = Edges[Offsets[current]+i];
int ngh = Edges[Offsets[current]+i];
//check if neighbor has been visited
//check if neighbor has been visited
if(parent[ngh] == -1) {
if(parent[ngh] == -1) {
parent[ngh] = current;
parent[ngh] = current;
//enqueue neighbor
//enqueue neighbor
queue[q_back++] = ngh;
queue[q_back++] = ngh;
}
}
}

```
    }
```

```
- Random accesses cost more than sequential accesses
```

int* parent =
(int*) malloc(sizeof(int)*n);
int* queue =
(int*) malloc(sizeof(int)*n);

```
```

for(int i=0; i<n; i++) {
parent[i] = -1;
}

```
queue[0] = source;
parent[source] = source;
int q_front \(=0 ;\) q_back \(=1\);
```

//while queue not empty
while(q front != q back) {
|int current = queue[q_front++]; //dequeue

```
    for(int i=0;i<degree; i++) \{
            int ngh = Edges[Offsets[current]+i];
            //check if neighbor has been visited
                if (parent[ngh] == -1) \{
            parent[ngh] = current;
            //enqueue neighbor
                            queue[q_back++] = ngh;
\}
    \}
- (Approx.) analyze number of cache misses (cold cache; cache size << n; 64 byte cache line size; 4 byte int)
- \(n / 16\) for initialization
- \(n / 16\) for dequeueing
- n for accessing Offsets array
\[
\text { Total } \leq(51 / 16) \mathrm{n}+(17 / 16) \mathrm{m}
\]
- \(\leq 2 n+m / 16\) for accessing Edges array
- m for accessing parent array
```

int* parent =
(int*) malloc(sizeof(int)*n);
int* queue =
(int*) malloc(sizeof(int)*n);
for(int i=0; i<n; i++) {
parent[i] = -1;
}
queue[0] = source;
parent[source] = source;
int q_front = 0; q_back = 1;

```
```

```
```

//while queue not empty

```
```

```
//while queue not empty
```

```
```

//while queue not empty
while(q_front != q_back) {
while(q_front != q_back) {
while(q_front != q_back) {
int current = queue[q_front++]; //dequeue
int current = queue[q_front++]; //dequeue
int current = queue[q_front++]; //dequeue
int degree =
int degree =
int degree =
Offsets[current+1]-Offsets[current];
Offsets[current+1]-Offsets[current];
Offsets[current+1]-Offsets[current];
for(int i=0;i<degree; i++) {
for(int i=0;i<degree; i++) {
for(int i=0;i<degree; i++) {
int ngh = Edges[Offsets[current]+i];
int ngh = Edges[Offsets[current]+i];
int ngh = Edges[Offsets[current]+i];
//check if neighbor has been visited
//check if neighbor has been visited
//check if neighbor has been visited
if(parent[ngh] == -1) {
if(parent[ngh] == -1) {
if(parent[ngh] == -1) {
parent[ngh] = current;
parent[ngh] = current;
parent[ngh] = current;
//enqueue neighbor
//enqueue neighbor
//enqueue neighbor
queue[q_back++] = ngh;
queue[q_back++] = ngh;
queue[q_back++] = ngh;
}
}
}
}
}
}
}

```
```

}

```
```

}

```
```

Check bitvector first before accessing parent array

```
- What if we can fit a bitvector of size n in cache?
- Might reduce the number of cache misses
- More computation to do bit manipulation
```

```
int* parent =
    (int*) malloc(sizeof(int)*n);
int* queue =
    (int*) malloc(sizeof(int)*n);
int nv = 1+n/32;
int* visited =
    (int*) malloc(sizeof(int)*nv)
for(int i=0; i<n; i++) {
    parent[i] = -1;
}
```

for (int i=0; i<nv; i++) \{
\quad visited[i] $=0 ;$
$\}$
queue[0] = source;
parent[source] = source;
visited[source/32]
$=(1 \ll($ source $\% 32))$;
int q_front $=0 ;$ q_back $=1$;

```
//while queue not empty
while(q_front != q_back) {
    int current = queue[q_front++]; //dequeue
    int degree =
            Offsets[current+1]-Offsets[current];
    for(int i=0;i<degree; i++) {
        int ngh = Edges[Offsets[current]+i];
        //check if neighbor has been visited
        if(!((1 << ngh%32) & visited[ngh/32])){
            visited[ngh/32] |= (1 << (ngh%32));
            parent[ngh] = current;
            //enqueue neighbor
            queue[q_back++] = ngh;
        }
    }
}
- Bitvector version is faster for large enough values of \(m\)
```


PARALLELIZING BREADTH-FIRST SEARCH

Parallel BFS Algorithm

- Can process each frontier in parallel
- Parallelize over both the vertices and their outgoing edges
- Races, load balancing

| 0 | 2 | 6 | 9 | 10 |
| :--- | :--- | :--- | :--- | :--- | degrees[i] = Offsets[frontier[i]+1] - Offsets[frontier[i]];

perform prefix sum on degrees array cilk_for(int $\mathbf{i}=0 ; \mathbf{i}<$ frontierSize; $\mathbf{i}++$) \{

$$
\begin{aligned}
& \mathrm{v}=\text { frontier }[\mathrm{i}] \text {, index = degrees[i], d = Offsets[v+1]-Offsets[v]; } \\
& \text { for(int } \mathrm{j}=0 ; \mathrm{j}<\mathrm{d} ; \mathrm{j}++)\{/ / \text { can be paral/e/ } \\
& \mathrm{ngh}=\text { Edges[Offsets[v]+j]; } \\
& \quad \text { if(parent[ngh] ==-1\&\& compare-and-swap(\&parent[ngh], - } 1, \mathrm{v}))\{ \\
& \quad \text { frontierNext[index+j]=ngh; } \\
& \quad \text { \} else \{ frontierNext[index+j] }=-1 ;\}
\end{aligned}
$$

- Number of iterations $<=$ diameter D of graph
- Each iteration takes Θ (log m) span for cilk_for loops, prefix sum, and filter (assuming inner loop is parallelized)

Span $=\Theta(D \log m)$

- Sum of frontier sizes $=\mathrm{n}$
- Each edge traversed once -> m total visits
- Work of prefix sum on each iteration is proportional to frontier size $->\Theta(n)$ total
- Work of filter on each iteration is proportional to number of edges traversed $->\Theta(\mathrm{m})$ total

$$
\text { Work }=\Theta(n+m)
$$

- Random graph with $\mathrm{n}=10^{7}$ and $\mathrm{m}=10^{8}$
- 10 edges per vertex
- 40-core machine with 2-way hyperthreading

- $31.8 x$ speedup on 40 cores with hyperthreading
- Serial BFS is 54% faster than parallel BFS on 1 thread

Golden Rule of Parallel Programming

Never write nondeterministic parallel programs.

They can exhibit anomalous behaviors, and it's hard to debug them.

Silver Rule of Parallel Programming

Never write nondeterministic parallel programs
 - but if you must* -

 always devise a test strategy to control the nondeterminism!Typical test strategies

- Turn off nondeterminism.
- Encapsulate nondeterminism.
- Substitute a deterministic alternative.
- Use analysis tools.
*E.g., for performance reasons.

```
BFS(Offsets, Edges, source) {
    parent, frontier, frontierNext, and degrees are arrays
    cilk_for(int i=0; i<n; i++) parent[i] = -1 ;
    frontier[0] = source, frontierSize = 1, parent[source] = source;
    while(frontierSize > 0) {
    cilk_for(int i=0; i<frontierSize; i++)
        degrees[i] = Offsets[frontier[i]+1] - Offsets[frontier[i]];
    perform prefix sum on degrees array
                                    Nondeterministic!
    cilk_for(int i=0; i<frontierSize; i++) {
        v = frontier[i], index = degrees[i], d = Offsets[v+1]-Offsets[v];
        for(int j=0; j<d; j++) {
            ngh = Edges[Offsets[v]+j];
            if(parent[ngh] == - 1 && compare-and-swap(&parent[ngh], -1, v)){
                frontierNext[index+j] = ngh;
            } else { frontierNext[index+j] =-1; }
        }
    }
    filter out "-1" from frontierNext, store in frontier, and update frontierSize to be
        the size of frontier (all done using prefix sum)
writeMin(addr, newval):
oldval \(=\) *addr
while(newval < oldval):
if(CAS(addr, oldval, newval)): return else: oldval = addr*
cilk_for(int \(\mathbf{i}=0 ; \mathbf{i}<\) frontierSize; \(\mathbf{i}++\) ) \{ //phase \(\mathrm{v}=\) frontier[i], index \(=\operatorname{degrees}[\mathrm{i}], \mathrm{d}=\) Of \(\mid\) for(int \(\mathbf{j}=\mathbf{0} ; \mathbf{j}<\mathbf{d} ; \mathbf{j}++\) ) \{ //can be paral/e/

\}
cilk_for(int \(\mathbf{i}=0 ; \mathbf{i}<\) frontierSize; \(\mathbf{i}++\) ) \{ //phase 2
\(v=\) frontier[i], index \(=\) degrees[i], \(d=\) Offsets[v+1]-Offsets[v]; for(int \(\mathrm{j}=0 ; \mathrm{j}<\mathrm{d} ; \mathbf{j}++\) ) \(\{\) //can be paral/e/
\[
\begin{aligned}
& \text { ngh }=\text { Edges[Offsets }[\mathrm{v}]+\mathrm{j}] ; \\
& \begin{array}{l}
\text { if(parent[ngh] }==\mathrm{v})\{ \\
\text { parent[ngh] }=-\mathrm{v} ; ~ / / \text { to avoid revisiting } \\
\text { frontierNext[index }+\mathrm{j}]=\text { ngh; }\}
\end{array} \\
& \text { else }\{\text { frontierNext[index }+\mathrm{j}]=-1 ;\}\}
\end{aligned}
\]
\}
filter out "-1" from frontierNext, store in frontier, and update frontierSize

\title{
DIRECTION-OPTIMIZING BREADTH-FIRST SEARCH
}

- Most of the work done with frontier (and sum of out-degrees) is large

© IEEE. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/
- Choose based on frontier size (Idea by Beamer, Asanovic, and Patterson in Supercomputing 2012)
Top-down
- Loop through frontier vertices and explore unvisited neighbors

\section*{Bottom-up}
for all vertices \(v\) in parallel: if parent[v] == - 1 :
for all neighbors ngh of v :
if ngh on frontier:
parent[v] = ngh;
place v on frontierNext; break;
- Efficient for small frontiers
- Updates to parent array is atomic
- Efficient for larger frontiers
- Update to parent array need not be atomic
- Threshold of frontier size > n/20 works well in practice
- Can also consider sum of out-degrees
- Need to generate "inverse" graph if it is directed
- Sparse integer array
- For example, [1, 4, 7]
- Dense byte array
- For example, \([0,1,0,0,1,0,0,1] \quad(n=8)\)
- Can further compress this by using 1 bit per vertex and using bit-level operations to access it
- Sparse representation used for top-down
- Dense representation used for bottom-up
- Need to convert between representations when switching methods

\section*{Direction-optimizing BFS performance}

- Benefits highly dependent on graph
- No benefits if frontier is always small (e.g., on a grid graph or road network)
```

procedure EDGEMAP(G, frontier, Update, Cond):
if (size(frontier) + sum of out-degrees > threshold) then:
return EDGEMAP_DENSE(G, frontier, Update, Cond);
else:
return EDGEMAP_SPARSE(G, frontier, Update, Cond);

```
- More general than just BFS!
- Ligra framework generalizes direction-optimization to many other problems
- For example, betweenness centrality, connected components, sparse PageRank, shortest paths, eccentricity estimation, graph clustering, k-core decomposition, set cover, etc.

\section*{GRAPH COMPRESSION AND REORDERING}

- For each vertex v:
- First edge: difference is Edges[Offsets[v]]-v
- i'th edge ( \(\mathrm{i}>1\) ): difference is Edges[Offsets[v]+i]-Edges[Offsets[v]+i-1]
- Want to use fewer than 32 or 64 bits to store each value
- k-bit (variable-length) codes
- Encode value in chunks of \(k\) bits
- Use k-1 bits for data, and 1 bit as the "continue" bit
- Example: encode "401" using 8-bit (byte) codes
- In binary:

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{} \\
\hline
\end{tabular}
"continue" bit
- Decoding is just encoding "backwards"
- Read chunks until finding a chunk with a "0" continue bit
- Shift data values left accordingly and sum together
- Branch mispredictions from checking continue bit

\section*{Encoding optimization}
- Another idea: get rid of "continue" bits


Header


Integers in group encoded in byte chunks
Number of bytes Size of group per integer (max 64)
- Increases space, but makes decoding cheaper (no branch misprediction from checking "continue" bit)
Source: Julian Shun, Laxman Dhulipala and Guy Blelloch. Smaller and Faster: Parallel Processing
of Compressed Graphs with Ligra+, IEEE Data Compression Conference 2015
- Need to decode during the algorithm
- If we decoded everything at the beginning we would not save any space!

- Each vertex decodes its edges sequentially
- What about high degree vertices?

- Space to store graph, which dominates the actual space usage for most graphs
Relative space compared to uncompressed graph

- Can further reduce space but need to ensure decoding is fast

■ Uncompressed
\(\square\) Compressed (Byte)

■ Compressed (ByteRLE)
- Compressed (Nibble (4-bit codes))

Source: Julian Shun, Laxman Dhulipala and Guy Blelloch. Smaller and Faster: Parallel Processing

\section*{Mヵな?}

Self-Normalized 40-core Running Time

- In parallel, compressed can outperform uncompressed
- These graph algorithms are memory-bound and memory subsystem is a bottleneck in parallel (contention for resources)
- Spends less time on memory operations, but has to decode
- Decoding has good speedup so overall speedup is higher
- All techniques integrated into Ligra framework

Source: Julian Shun, Laxman Dhulipala and Guy Blelloch. Smaller and Faster: Parallel Processing of Compressed Graphs with Ligra+, IEEE Data Compression Conference 2015
- Reassign IDs to vertices to improve locality
- Goal: Make vertex IDs close to their neighbors' IDs and neighbors' IDs close to each other


Sum of differences \(=21\)


Sum of differences \(=19\)
- Can improve compression rate due to smaller "differences"
- Can improve performance due to higher cache hit rate
- Various methods: BFS, DFS, METIS, by degree, etc.
- Real-world graphs are large and sparse
- Many graphs algorithms are irregular and involve many memory accesses
- Improve performance with algorithmic optimizations and by creating/exploiting locality
- Optimizations may work for some graphs, but not others

MIT OpenCourseWare
https://ocw.mit.edu
6.172 Performance Engineering of Software Systems

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.```

