

Performance Engineering of Software Systems
Massachusetts Institute of Technology 6.172
Prof. Charles E. Leiserson and Prof. Julian Shun Handout 14

Homework 9: Deterministic Execution

Please answer the questions in this handout and submit an individual writeup.

[Note: This assignment makes use of AWS and/or Git features which may not be available to
OCW users.]

1 Introduction

We’ll explore the power of deterministic execution, which may or may not help you debug your
final project. Before we even get to parallel code, there will be plenty of bugs to root out in your
serial code.

2 Environment dependencies

The most entertaining bugs to debug are the ones that depend on the environment. Why would
a bug happen only on awsrun but not on your development machine? Why would code that
works great for you, occasionally crash for your partner, and always for your TA?

Let’s dig deeper into this simple program excerpt from undef.c.

01 main() {
02 int i;
03 printf("value of i=%d\n", i);
04 printf("address &i=%p\n", &i);
05 }

Figure 1: An undef.c excerpt

The Makefile contains a number of useful targets for this exercise. Whenever you use a target,
you may find it useful to examine the Makefile in detail and understand why certain targets have
the result they do.

Run it a few times using make undef-compare and compare the results. Are they the same?
Why or why not? Now, let’s fix these nondeterministic outputs line by line.

1

2 Handout 14 — Homework 9: Deterministic Execution

Whenever your program is using undefined state, it’s often going to produce non-deterministic
results. Undefined variables (or bits within one) are one such nondeterminism source. Fix the
code to define the variable and rerun make undef-compare to make sure that it worked.

Next, we will look at nondeterminism in addresses. The higher order bits of a pointer are
random due to Address Space Layout Randomization (ASLR) (look on Wikipedia for more de-
tails), which is an important security feature now in all modern operating systems. However,
for testing how it impacts your address-dependent nondeterministic program, you can run your
program without ASLR with the command setarch x86_64 -R ./undef. Run make undef-noaslr
to run the program a few times without ASLR. Is this program deterministic now?

Even after considering these two factors, there are even more aspects that affect a nondeter-
ministic program. Run make undef-env to run the command with differing environments. What
is printed now? To see why, run make whoami and take a look at user.c :

06 int main(int argc, char *argv[], char* envp[]) {
07 char *username=genenv("USER");
08 }

Figure 2: An excerpt from user.c

You can see that the stack location is perturbed by the environment block, which affects the
lower order bits of the stack variable i in undef.c.

Thus, we learned that program addresses are thus an important source of nondeterminism.
These are a derivative of environmental, time, and randomness sources beyond our control.

3 Nondeterministic Hashtable

Now let’s see a more complicated example in hashtable.c. It has a mostly working implementa-
tion of an open address hashtable with linear probing. This technique is a lot more cache-friendly
compared to hashtables with linked lists.

Run make hashtable1 a few times. It may work for you most of the time. How about
make hashtable10 or make hashtable1000?

Checkoff Item 1: What do you need to make this program deterministic? Modify the
Makefile target for hashtable1000-good so that all runs succeed.

To fix our bugs, we want the bugs to be reproducible.

3 Handout 14 — Homework 9: Deterministic Execution

Checkoff Item 2: Modify hashtable1-bad target so the program always fails. Show your
modified Makefile target. You may find it useful to examine hashtable.c to see what system
arguments it takes.

4 Replay Debugging

To fix serial code, you can use the GCC Record/Replay debugging facilities:

http://www.sourceware.org/gdb/wiki/ProcessRecord/Tutorial

(gdb) break main
(gdb) run
(gdb) record
(gdb) continue
(gdb) reverse-next
(gdb) reverse-next
(gdb) reverse-continue

If you don’t like typing, you can just do

(gdb) b main
(gdb) r
(gdb) rec
(gdb) c
(gdb) rn
(gdb) rn
(gdb) rc

You may find it useful to watch some variables when debugging:

(gdb) set can-use-hw-watchpoints 0
(gdb) watch some_variable_name

You don’t necessarily have to use good tools—if you have plenty of time, you can always
figure out any bug by staring at the code long enough (static analysis by eyeballing). However,
a much easier approach is to run your code with asserts, printf statements, or replay debugging
techniques like gdb. Use any of the above techniques to find and fix the bug in hashtable_insert.

Checkoff Item 3: What was the bug? What is your fix? Rerun make hashtable1000 to ensure
that your fix always works.

http://www.sourceware.org/gdb/wiki/ProcessRecord/Tutorial

4 Handout 14 — Homework 9: Deterministic Execution

Remember that this same bug may appear in other functions that have similar routines. This
is an important reason why you should try not to write the same piece of code twice. An easy
way to fix this is to refactor your code or use macros.

5 Hashlocking

Assuming that the serial code works, let’s move on to the parallel version with make hashtable-mt.
If you run make hashtable-mt1000, you may find some errors. We will need some synchronization
here to fix the errors.

One possibility is to use a single hashtable lock, as in hashtable_insert_locked. However,
this lock would be very highly contended. A good technique for reducing lock contention on
a shared data structure is to split the lock into multiple locks. For example, instead of a single
“tablelock”, we consider having a separate lock for each section of the hashtable. A lock per
hashtable line (“rowlock”) would have too much memory and cache overhead, but a lock per
hash (“hashlock”) gives us the amount of overhead that we want.

Modify hashtable_fill to use hashtable_insert_fair, which is a rather basic implementa-
tion of a hashlock.

Write-up 1: Is the hashlock implementation in hashlock.c vulnerable to false sharing? Why
or why not?

Write-up 2: What problem is the fairness solution in hashtable_insert_fair introducing?
Explain or demonstrate the behavior you see.

6 Lockless Hashtable

Now, let’s try to avoid using a lock altogether. On modern processors, the assembly instruction
CMPXCHG16B supports the compare-and-swap operation for 16 bytes, and similar instructions exist
for 4 bytes and 8 bytes. However, early 64-bit processors didn’t support the 16 byte instruction.
In this vein, we’ll use the CMPXCHG8B in our implementation to only work with 64-bit words. This
does mean that we can’t atomically write a whole entry_t. Assume that size can be a positive
integer only. The relevant definitions are in common.h.

5 Handout 14 — Homework 9: Deterministic Execution

Write-up 3: Use InterlockedCompareExchange64 to implement your changes in
hashtable_insert_lockless. Don’t forget to modify hashtable_fill to use your new code.
Run make hashtable-mt1000 to ensure that it works. What changes are necessary in
hashtable_lookup so you can use just a 8-byte compare-and-swap in
hashtable_insert_lockless?

7 Deterministic Hashtable

Write-up 4: (No implementation required.) How would you implement a deterministic
hashtable structure, such that the order of insertions does not change the final hashtable
state?

MIT OpenCourseWare
https://ocw.mit.edu

6.172 Performance Engineering of Software Systems
Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

https://ocw.mit.edu
https://ocw.mit.edu/terms

	Introduction
	Environment dependencies
	Nondeterministic Hashtable
	Replay Debugging
	Hashlocking
	Lockless Hashtable
	Deterministic Hashtable
	cover.pdf
	Blank Page

