State-Space Models

6.011, Spring 2018

Lec 4

Exponential unit sample response $h[n] = \beta \lambda^{n-1} u[n-1] + d \delta[n]$

General transfer function of a causal DT LTI system with distinct poles

Delay-adder-gain system

Defining properties of DT state-space models

$$\mathbf{q}[n+1] = \mathbf{f}\left(\mathbf{q}[n], x[n], n\right)$$
$$y[n] = g\left(\mathbf{q}[n], x[n], n\right)$$

- State evolution property
- Instantaneous output property

MIT OpenCourseWare https://ocw.mit.edu

6.011 Signals, Systems and Inference Spring 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.