
6.006 Introduction to Algorithms Recitation 15 November 4, 2011

Shortest Path and BFS
In the past, we were able to use breadth-first search to find the shortest paths between a source
vertex to all other vertices in some graph G. The reason it worked is that each edge had equal
weight (e.g., 1) so the shortest path between two vertices was the one that contained the fewest
edges. Now, we introduce edge weights so the cost of traveling through edges can differ from
edge to edge. The shortest path between two vertices is defined to be the path whose sum of edge
weights is the least. BFS will not work on weighted graphs since the path with the fewest edges
may not be the shortest if the edges it contains are expensive.

However, if all the weights are intergers and they are bounded by a small number, say k, we
can still use BFS. To do this, for each edge (u, v), we split it into w(u, v) edges with weight 1
connecting u to v through some dummy vertices. Then we do BFS on the new graph to find the
shortest path. The time complexity will be O(kE) if the original graph has |E| edges.

Graph Transformation

Shortest path with even or odd length
Given a weighted graph G = (V,E,w), suppose we only want to find a shortest path with odd
number of edges from s to t. To do this, we can make a new graph G′. For every vertex u in G,
there are two vertices uE and uO in G′: these represent reaching the vertex u through even and odd
number of edges respectively. For every edge (u, v) in G, there are two edges in G′: (uE, vO) and
(uO, vE). Both of these edges have the same weight as the original. Constructing this graph takes
linear time O(V + E). Then we can run shortest path algorithms from sE to tO.

Optimization in two dimensions
Suppose you want to drive from city s to city d, and want to reach d as early as possible while
minimizing the gas cost. Function g(u, v) represents the gas cost for travelling from city u to city
v. Function f(u, v, t) represnets the time it takes to drive from u to v starting at time t because
the traffic is different throught out the day. All times are integers in mininutes. Suppose the upper
bound of the time it takes from s to d is T . Find the best route to do this. Note that you can stop at
some cities to wait for a better traffic.

For each city u, we create T + 1 copies of vertices ut for t = 0, 1, . . . , T representing reaching
u at time 0, 1, . . . , T . We also add an edge (ut, ut+1) for t = 0, 1, . . . , T − 1 with weight 0 to
represent waiting at city u. For every route between u and v, we add an edge (ut, vt+f(u,v,t)) for
t = 0, 1, . . . , T if t+ f(u, v, t) ≤ T with weight equal to g(u, v).

Then we can run Dijkstra’s algorithm starting at s0 and check from d0, d1, . . . , dT to find the
first dt that is not infinity. Then t is the earliest time we can reach d and the path costs minimum
gas.

MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

