
UNDERSTANDING
PROGRAM
EFFICIENCY: 2
(download slides and .py files and follow along!)

6.0001 LECTURE 11

6.0001	LECTURE	11	 1	

TODAY

§ 	Classes	of	complexity	

§ 	Examples	characteris;c	of	each	class	

6.0001	LECTURE	11	 2	

WHY WE WANT TO UNDERSTAND
EFFICIENCY OF PROGRAMS

§ 	how	can	we	reason	about	an	algorithm	in	order	to	
predict	the	amount	of	;me	it	will	need	to	solve	a	
problem	of	a	par;cular	size?	

§ 	how	can	we	relate	choices	in	algorithm	design	to	the	
;me	efficiency	of	the	resul;ng	algorithm?	
◦ are	there	fundamental	limits	on	the	amount	of	;me	we	
will	need	to	solve	a	par;cular	problem?	

6.0001	LECTURE	11	 3	

ORDERS OF GROWTH: RECAP

Goals:		
§ 	want	to	evaluate	program’s	efficiency	when	input	is	very	big	
§ 	want	to	express	the	growth	of	program’s	run	5me	as	input	
size	grows	
§ 	want	to	put	an	upper	bound	on	growth	–	as	;ght	as	possible	
§ 	do	not	need	to	be	precise:	“order	of”	not	“exact”	growth	
§ 	we	will	look	at	largest	factors	in	run	;me	(which	sec;on	of	
the	program	will	take	the	longest	to	run?)	
§ 	thus,	generally	we	want	5ght	upper	bound	on	growth,	as	
func5on	of	size	of	input,	in	worst	case	

6.0001	LECTURE	11	 4	

COMPLEXITY CLASSES: RECAP

§ 	
§ 	
§ 	
§ 	
§ 	
co
§ 	
co
in

O(1)	denotes	constant	running	;me	
O(log	n)	denotes	logarithmic	running	;me	
O(n)	denotes	linear	running	;me	
O(n	log	n)	denotes	log-linear	running	;me	
O(nc)		denotes	polynomial	running	;me	(c	is	a	
nstant)	

O(cn)	denotes	exponen;al	running	;me	(c	is	a	
nstant	being	raised	to	a	power	based	on	size	of	
put)	

6.0001	LECTURE	11	 5	

COMPLEXITY CLASSES
ORDERED LOW TO HIGH

	

	

	O(1) :	 	 			constant	
	 								
	O(log n) :	 	 	logarithmic	
	 								
	O(n) :	 	 						linear	
	 								
	O(n log n):	 	 			loglinear	
	 								
	O(nc) :	 	 	polynomial	
	 								
	O(cn) :	 	 	exponen;al	

6.0001	LECTURE	11	 6	

COMPLEXITY GROWTH

CLASS	 n=10	 =	100	 =	1000	 =	1000000	

O(1)	 1	 1	 1	 1	

O(log	n)	 1	 2	 3	 6	

O(n)	 10	 100	 1000	 1000000	

O(n	log	n)	 10	 200	 3000	 6000000	

O(n^2)	 100	 10000	 1000000	 1000000000000	

O(2^n)	 1024	 12676506 1071508607186267320948425049060 Good	luck!!	
00228229 0018105614048117055336074437503
40149670 8837035105112493612249319837881
3205376	 5695858127594672917553146825187

1452856923140435984577574698574
8039345677748242309854210746050
6237114187795418215304647498358
1941267398767559165543946077062
9145711964776865421676604298316

52624386837205668069376	

6.0001	LECTURE	11	 7	

CONSTANT COMPLEXITY

§ 	complexity	independent	of	inputs	

§ 	very	few	interes;ng	algorithms	in	this	class,	but	can	
oYen	have	pieces	that	fit	this	class	

§ 	can	have	loops	or	recursive	calls,	but	ONLY	IF	number	
of	itera;ons	or	calls	independent	of	size	of	input	

6.0001	LECTURE	11	 8	

LOGARITHMIC COMPLEXITY

§ 	complexity	grows	as	log	of	size	of	one	of	its	inputs	

§ 	example:	
◦ bisec;on	search	
◦ binary	search	of	a	list	

6.0001	LECTURE	11	 9	

BISECTION SEARCH

§ 	suppose	we	want	to	know	if	a	par;cular	element	is	
present	in	a	list	

§ 	saw	last	;me	that	we	could	just	“walk	down”	the	list,	
checking	each	element	

§ 	complexity	was	linear	in	length	of	the	list	

§ 	suppose	we	know	that	the	list	is	ordered	from	
smallest	to	largest	
◦ saw	that	sequen;al	search	was	s;ll	linear	in	complexity	
◦ can	we	do	becer?	

6.0001	LECTURE	11	 10	

BISECTION SEARCH

1.  pick	an	index,	i,	that	divides	list	in	half	
2.  ask	if	L[i] == e
3.  if	not,	ask	if	L[i] is	larger	or	smaller	than	e
4.  L e

A	new	version	of	a	divide-and-conquer	algorithm	
§  break	into	smaller	version	of	problem	(smaller	list),	plus	

some	simple	opera;ons	
§  answer	to	smaller	version	is	answer	to	original	problem	

depending	on	answer,	search	leY	or	right	half	of for	

6.0001	LECTURE	11	 11	

BISECTION SEARCH
COMPLEXITY ANALYSIS

§ 	finish	looking
through	list	
when		

				1	=	n/2i		

				so	i	=	log	n	

	
	 §	 complexity	of	

recursion	is	
O(log	n)	–	
where	n	is	len(L)	

6.0001	LECTURE	11	 12	

	

…	

…

BISECTION SEARCH
IMPLEMENTATION 1

def bisect_search1(L, e):!

 if L == []:!

 return False!

 elif len(L) == 1:!

 return L[0] == e!

 else:!

 half = len(L)//2!

 if L[half] > e:!

 return bisect_search1(L[:half], e)!

 else:!

 return bisect_search1(L[half:], e)!

	

6.0001	LECTURE	11	 13	

COMPLEXITY OF FIRST
ETHOD
BISECTION SEARCH M

§ 	implementa5on	1	–	bisect_search1	
•  	O(log	n)	bisec;on	search	calls	

ll,	size	of	range	to	be	searched	is	cut	in	half	
	size	n,	in	worst	case	down	to	range	of	size	1	
	when	k	=	log	n	
;on	search	call	to	copy	list	
	up	each	call,	so	do	this	for	each	level	of	

(n	log	n)	
eful,	note	that	length	of	list	to	be	
d	on	each	recursive	call	
ost	to	copy	is	O(n)	and	this	dominates	the	log	
ursive	calls	

6.0001	LECTURE	11	 14	

•  On	each	recursive	ca
•  If	original	range	is	of
when	n/(2^k)	=	1;	or

• O(n)	for	each	bisec
•  This	is	the	cost	to	set
recursion		

• O(log	n)	*	O(n)	à	O
•  	if	we	are	really	car
copied	is	also	halve
•  turns	out	that	total	c
n	cost	due	to	the	rec

BISECTION SEARCH
ALTERNATIVE

§ 	s;ll	reduce	size	of	
problem	by	factor	
of	two	on	each	step	
§ 	but	just	keep	track	
of	low	and	high	
por;on	of	list	to	be	
searched	
§ 	avoid	copying	the	
list	
	
§ 	complexity	of	
recursion	is	again	
O(log	n)	–	where	n	
is	len(L)	

6.0001	LECTURE	11	 15	

def bisect_search2(L, e):!
 def bisect_search_helper(L, e, low, high):!
 if high == low:!
 return L[low] == e!
 mid = (low + high)//2!
 if L[mid] == e:!
 return True!
 elif L[mid] > e:!
 if low == mid: #nothing left to search!
 return False!
 else:!
 return bisect_search_helper(L, e, low, mid - 1)!
 else:!
 return bisect_search_helper(L, e, mid + 1, high)!
 if len(L) == 0:!
 return False!
 else:!
 return bisect_search_helper(L, e, 0, len(L) - 1)!

6.0001	LECTURE	11	 16	

BISECTION SEARCH
IMPLEMENTATION 2

COMPLEXITY OF SECOND
BISECTION SEARCH METHOD

§ 	implementa5on	2	–	bisect_search2	and	its	helper	
• O(log	n)	bisec;on	search	calls	
•  On	each	recursive	call,	size	of	range	to	be	searched	is	cut	in	half	
•  If	original	range	is	of	size	n,	in	worst	case	down	to	range	of	size	1	
when	n/(2^k)	=	1;	or	when	k	=	log	n	

• pass	list	and	indices	as	parameters	
•  list	never	copied,	just	re-passed	as	a	pointer	
•  thus	O(1)	work	on	each	recursive	call	
• O(log	n)	*	O(1)	à	O(log	n)	

6.0001	LECTURE	11	 17	

LOGARITHMIC COMPLEXITY

def intToStr(i):!
 digits = '0123456789'!
 if i == 0:!
 return '0'!
 result = ''!
 while i > 0:!
 result = digits[i%10] + result!
 i = i//10!
 return result!

!

6.0001	LECTURE	11	 18	

LOGARITHMIC COMPLEXITY

def intToStr(i):! 	 only	have	to	look	at	loop	as	

no	func;on	calls	

	 within	while	loop,	constant	
number	of	steps	

	 how	many	;mes	through	
! loop?	

◦  how	many	;mes	can	one	
divide	i	by	10?	

◦ O(log(i))	

 digits = '0123456789'!
 if i == 0:!
 return '0'!
 res = ''!
 while i > 0:!
 res = digits[i%10] + res
 i = i//10!
 return result!

	

6.0001	LECTURE	11	 19	

LINEAR COMPLEXITY

§ 	saw	this	last	;me	
◦  	searching	a	list	in	sequence	to	see	if	an	element	is	
present	

◦  	itera;ve	loops	

6.0001	LECTURE	11	 20	

O() FOR ITERATIVE FACTORIAL

er	of	itera;ve	calls	

):!

p,	constant	cost	each	

§ 	complexity	can	depend	on	numb
def fact_iter(n):!

 prod = 1!

 for i in range(1, n+1

 prod *= i!

 return prod!

§ 	overall	O(n)	–	n	;mes	round	loo
;me	

6.0001	LECTURE	11	 21	

O() FOR RECURSIVE
FACTORIAL

def fact_recur(n):!
 """ assume n >= 0 """!
 if n <= 1: !
 return 1!
 else: !
 return n*fact_recur(n – 1)!

	
t	runs	a	bit	slower	than	
	calls	
f	func;on	calls	is	linear	
p	call	
l	implementa;ons	are	

22	

§ 	computes	factorial	recursively	
§ 	if	you	;me	it,	may	no;ce	that	i
itera;ve	version	due	to	func;on
§ 	s;ll	O(n)	because	the	number	o
in	n,	and	constant	effort	to	set	u
§ 	itera5ve	and	recursive	factoria
the	same	order	of	growth	

6.0001	LECTURE	11	

LOG-LINEAR COMPLEITY

is	merge	sort	

§ 	many	prac;cal	algorithms	are	log-linear	

§ 	very	commonly	used	log-linear	algorithm	

§ 	will	return	to	this	next	lecture	

6.0001	LECTURE	11	 23	

POLYNOMIAL COMPLEXITY

§ 	most	common	polynomial	algorithms	are	quadra;c,	
i.e.,	complexity	grows	with	square	of	size	of	input	

§ 	commonly	occurs	when	we	have	nested	loops	or	
recursive	func;on	calls	

§ 	saw	this	last	;me	

6.0001	LECTURE	11	 24	

EXPONENTIAL COMPLEXITY

§ 	recursive	func;ons	where	more	than	one	recursive	
call	for	each	size	of	problem	
◦ Towers	of	Hanoi	

§ 	many	important	problems	are	inherently	exponen;al	
◦ unfortunate,	as	cost	can	be	high	
◦ will	lead	us	to	consider	approximate	solu;ons	as	may	
provide	reasonable	answer	more	quickly	

6.0001	LECTURE	11	 25	

COMPLEXITY OF TOWERS OF
HANOI

§ 	Let	tn		denote	;me	to	solve	tower	of	size	n	
§ 	tn	=	2tn-1	+	1	
§ 					=	2(2tn-2	+	1)	+	1	
§	  				=	4tn-2	+	2	+	1	
§ 					=	4(2t 	+	1)	+	2	+	1	 Geometric	growth	

n-3
	

§ 					=	8tn-3	+	4	+	2	+	1	 a	=											2n-1	+	…			+	2		+	1	
§ 					=	2k	t k-

n-k	+	2 1	+	…	+	4	+	2	+	1	 2a	=	2n	+	2n-1		+	...	+	2	
a			=	2n																												-	1	§ 					=	2n-1	+	2n-2	+	...	+	4	+	2	+	1	

§ 					=	2n	–	1	
§	 so	order	of	growth	is	O(2n)	

6.0001	LECTURE	11	 26	

EXPONENTIAL COMPLEXITY

§ 	given	a	set	of	integers	(with	no	repeats),	want	to	
generate	the	collec;on	of	all	possible	subsets	–	called	
the	power	set	

§ 	{1,	2,	3,	4}	would	generate	
◦  {},	{1},	{2},	{3},	{4},	{1,	2},	{1,	3},	{1,	4},	{2,	3},	{2,	4},	{3,	4},	
{1,	2,	3},	{1,	2,	4},	{1,	3,	4},	{2,	3,	4},	{1,	2,	3,	4}	

§ 	order	doesn’t	macer	
◦  {},	{1},	{2},	{1,	2},	{3},	{1,	3},	{2,	3},	{1,	2,	3},	{4},	{1,	4},	{2,	
4},	{1,	2,	4},	{3,	4},	{1,	3,	4},	{2,	3,	4},	{1,	2,	3,	4}	

6.0001	LECTURE	11	 27	

POWER SET – CONCEPT

§ we	want	to	generate	the	power	set	of	integers	from	1	to	n
§ 	assume	we	can	generate	power	set	of	integers	from	1	to	
n-1	
§ 	then	all	of	those	subsets	belong	to	bigger	power	set	

all	of	those	subsets	with	n	
long	to	the	bigger	power	set	

(choosing	not	include	n);	and	
added	to	each	of	them	also	be
(choosing	to	include	n)	
§ 	{},	{1},	{2},	{1,	2},	{3},	{1,	3},	{2,	3},	{1,
4},	{3,	4},	{1,	3,	4},	{2,	3,	4},	{1,	2,	3,	4}	

	

	2,	3},	{4},	{1,	4},	{2,	4},	{1,	2,	

	
§ 	nice	recursive	descrip;on!	

6.0001	LECTURE	11	 28	

EXPONENTIAL COMPLEXITY

def genSubsets(L):!
 res = []!
 if len(L) == 0:!
 return [[]] #list of empty list!
 smaller = genSubsets(L[:-1]) # all subsets without

 last element
last element!
 extra = L[-1:] # create a list of just
 new = []!
 for small in smaller:!
 new.append(small+extra) # for all smaller
solutions, add one with last element!
 return smaller+new # combine those with last
element and those without!

6.0001	LECTURE	11	 29	

!

EXPONENTIAL COMPLEXITY

	 assuming	append	is	
constant	;me	

	 ;me	includes	;me	to	solve	
smaller	problem,	plus	;me	

 smaller = genSubsets(L[:-1])! needed	to	make	a	copy	of	
 extra = L[-1:]! all	elements	in	smaller	
 new = []! problem	
 for small in smaller:!
 new.append(small+extra)!
 return smaller+new!

	

def genSubsets(L):!
 res = []!
 if len(L) == 0:!
 return [[]] !

6.0001	LECTURE	11	 30	

EXPONENTIAL COMPLEXITY

def genSubsets(L):! 	 but	important	to	thin
 res = []! about	size	of	smaller	
 if len(L) == 0:!

k	

 return [[]] ! 	 know	that	for	a	set	of	size	
 smaller = genSubsets(L[:-1])! k	there	are	2k	cases	
 extra = L[-1:]!
 new = []! 	 how	can	we	deduce	
 for small in smaller:! overall	complexity?	
 new.append(small+extra)!
 return smaller+new!

	

6.0001	LECTURE	11	 31	

EXPONENTIAL COMPLEXITY

§ 	let	tn	denote	;me	to	solve	problem	of	size	n	

§ 	let	sn	denote	size	of	solu;on	for	problem	of	size	n	

§ 	tn	=	tn-1	+	sn-1	+	c	(where	c	is	some	constant	number	of	
opera;ons)	

§ 	tn	=	tn-1	+	2n-1	+	c	
§ 					=	tn-2	+	2n-2	+	c	+	2n-1	+	c	

Thus	
§	  				=	tn-k	+	2n-k	+	…	+	2n-1	+	kc	 compu;ng	
§ 					=	t0	+	20	+	...	+	2n-1	+	nc	 power	set	is		
§ 					=	1	+	2n		+	nc	 O(2n)	

6.0001	LECTURE	11	 32	

COMPLEXITY CLASSES

§ 	O(1)	–	code	does	not	depend	on	size	of	problem	

§ 	O(log	n)	–	reduce	problem	in	half	each	;me	through	
process	

§ 	O(n)	–	simple	itera;ve	or	recursive	programs	

§ 	O(n	log	n)	–	will	see	next	;me	

§ 	O(nc)	–	nested	loops	or	recursive	calls	
§ 	O(cn)	–	mul;ple	recursive	calls	at	each	level		

6.0001	LECTURE	11	 33	

SOME MORE EXAMPLES OF
ANALYZING COMPLEXITY

6.0001	LECTURE	11	 34	

COMPLEXITY OF
ITERATIVE FIBONACCI

def fib_iter(n):! §  if n == 0:! 	Best	case:	
 return 0! O(1)	
 elif n == 1:!
 return 1! § 	Worst	case:	
 else:! O(1)	+	O(n)	+	O(1)	è	O(n)	 fib_i = 0!
 fib_ii = 1! 	
 for i in range(n-1):!
 tmp = fib_i!
 fib_i = fib_ii!

 fib_ii = tmp + fib_ii!
turn fib_ii !

 re

6.0001	LECTURE	11	 36	

COMPLEXITY OF
RECURSIVE FIBONACCI

def fib_recur(n):!
 """ assumes n an int >= 0 """!
 if n == 0:!
 return 0!
 elif n == 1:!
 return 1!
 else:!
 return fib_recur(n-1) + fib_recur(n-2)!

§ 	Worst	case:	
O(2n)	

6.0001	LECTURE	11	 37	

COMPLEXITY OF RECURSIVE
FIBONACCI
 fib(5)

 fib(4) fib(3)

 fib(3) fib(2) fib(2) fib(1)

 fib(2) fib(1)

§ 	actually	can	do	a	bit	becer	than	2n	since	tree	of	
cases	thins	out	to	right		
§ 	but	complexity	is	s;ll	exponen;al	

6.0001	LECTURE	11	 38	

BIG OH SUMMARY

§ 	compare	efficiency	of	algorithms	
•  	nota;on	that	describes	growth	
•  	lower	order	of	growth	is	becer	
•  	independent	of	machine	or	specific	implementa;on	

§ 	use	Big	Oh	
•  	describe	order	of	growth	
•  	asympto5c	nota5on	
•  	upper	bound	
•  	worst	case	analysis	

6.0001	LECTURE	11	 40	

COMPLEXITY OF COMMON
PYTHON FUNCTIONS

 § 	Lists:	n is	len(L) § 	Dic;onaries:	n is	len(d)
•  	index	 	O(1)	 §	 worst	case	
•  	store	 	O(1)	 •  	index	 	O(n)	
•  	length	 	O(1)	 •  	store	 	O(n)	
•  	append	 	O(1)	 •  	length	 	O(n)	
•  	==		 	O(n)	 •  	delete	 	O(n)	
•  	remove	 	O(n)	 •  	itera;on	 	O(n)	
•  	copy	 	O(n)	 §	  	average	case	
•  	reverse	 	O(n)	 •  	index	 	O(1)	
•  	itera;on	 	O(n)	 •  	store	 	O(1)	
•  	in	list 	O(n)	 •  	delete	 	O(1)	

•  	itera;on	 	O(n)	

6.0001	LECTURE	11	 41	

MIT OpenCourseWare
https://ocw.mit.edu

6.0001 Introduction to Computer Science and Programming in Python
Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu
https://ocw.mit.edu/terms

