UNDERSTANDING
PROGRAM
EFFICIENCY: 2

(download slides and .py files and follow along!)

6.0001 LECTURE 11

TODAY

= Classes of complexity

= Examples characteristic of each class

6.0001 LECTURE 11 2

WHY WE WANT TO UNDERSTAND
EFFICIENCY OF PROGRAMS

" how can we reason about an algorithm in order to
predict the amount of time it will need to solve a
problem of a particular size?

= how can we relate choices in algorithm design to the
time efficiency of the resulting algorithm?

o are there fundamental limits on the amount of time we
will need to solve a particular problem?

6.0001 LECTURE 11 3

ORDERS OF GROWTH: RECAP

Goals:

= want to evaluate program’s efficiency when input is very big

= want to express the growth of program’s run time as input
Size grows

= want to put an upper bound on growth — as tight as possible
= do not need to be precise: “order of” not “exact” growth

= we will look at largest factors in run time (which section of
the program will take the longest to run?)

= thus, generally we want tight upper bound on growth, as
function of size of input, in worst case

6.0001 LECTURE 11 4

COMPLEXITY CLASSES: RECAP

" O(1) denotes constant running time
" O(log n) denotes logarithmic running time

" O(n) denotes linear running time
" O(n log n) denotes log-linear running time

" O(n°) denotes polynomial running time (c is a
constant)

= O(c") denotes exponential running time (c is a
constant being raised to a power based on size of
input)

6.0001 LECTURE 11 5

COMPLEXITY CLASSES
ORDERED LOW TO HIGH

O (1) constant — |
O(log n) I/‘— logarithmic

O (n) linear — |

O(n log n): I «— loglinear |

O (n°¢) ; - polynomial = +

~c.®
C\(:)(\S\,’a(\‘ A
¢ O (cm) : z < exponential
6.0001 LETUREll

COMPLEXITY GROWT
N N R N

0(1) 1

O(log n) 1 2 3 6
O(n) 10 100 1000 1000000
O(n log n) 10 200 3000 6000000
O(n”"2) 100 10000 1000000 1000000000000
O(2”n) 1024 12676506 1071508607186267320948425049060 Good luck!!

00228229 0018105614048117055336074437503
40149670 8837035105112493612249319837881
3205376 5695858127594672917553146825187
1452856923140435984577574698574
8039345677748242309854210746050
6237114187795418215304647498358
1941267398767559165543946077062
9145711964776865421676604298316
52624386837205668069376

6.0001 LECTURE 11 7

CONSTANT COMPLEXITY

= complexity independent of inputs

= very few interesting algorithms in this class, but can
often have pieces that fit this class

= can have loops or recursive calls, but ONLY IF number
of iterations or calls independent of size of input

6.0001 LECTURE 11 8

LOGARITHMIC COMPLEXITY

= complexity grows as log of size of one of its inputs

= example:
o bisection search

° binary search of a list

BISECTION SEARC

" suppose we want to know if a particular element is
present in a list

" saw last time that we could just “walk down” the list,
checking each element

= complexity was linear in length of the list

" suppose we know that the list is ordered from
smallest to largest

> saw that sequential search was still linear in complexity
° can we do better?

6.0001 LECTURE 11

10

BISECTION SEARC

1. pickanindex, i, that divides list in half

2. askifL[i] == e

3. ifnot,askif L{i] islarger or smaller than e
4.

depending on answer, search left or right half of L. for e

A new version of a divide-and-conquer algorithm

= break into smaller version of problem (smaller list), plus
some simple operations

= answer to smaller version is answer to original problem

6.0001 LECTURE 11 11

BISECTION SEARCH
COMPLEXITY ANALYSIS

N = finish looking
. S through list
N o«
\ 12 e\e“\e(\xs o when
¢ 1=n/2
LN (&)
AN e\e“\e(\ :
al® soi=logn
e
N e® = complexity of
recursion is
N O(log n) -
A &° where n is len(L)

BISECTION SEARCH
MPLEMENTATION 1

def bisect searchl(L, e): «§§®
. 0
if L == []: CO\x\
return False y&“
elif len(L) == 1: 0001\
return L[0] == e o\ ‘ @™
S o
else: dy\\ &Q‘-5W§
half = len(L)//2 o> 69®
if L[half] > e: P | «cpo
[
return bisect_searchl(:L[:half], e) WO
else: "_—_—_—_—_—_:
| CO(\
return bisect_searchl(:L[half:j, e) @Q\

6.0001 LECTURE 11

13

COMPLEXITY O
BISECTION SEA

- F

RST

RCH

METHOD

" implementation 1 — bisect_searchl

* O(log n) bisection search calls

* On each recursive call, size of range to be searched is cut in half

* If original range is of size n, in worst case down to range of size 1
when n/(27k) = 1; or when k = log n

* O(n) for each bisection search call to copy list
* This is the cost to set up each call, so do this for each level of

recursion

* O(log n) * O(n) = O(n log n)
* if we are really careful, note that length of list to be
copied is also halved on each recursive call

* turns out that total cost to copy is O(n) and this dominates the log
n cost due to the recursive calls

6.0001 LECTURE 11

14

BISECTION SEARCH
ALTERNATIVE

% :
% ﬁ
i ﬁ
ﬁ

= still reduce size of
problem by factor
of two on each step

= but just keep track
of low and high
portion of list to be
searched

= avoid copying the
list

= complexity of
recursion is again
O(log n) — where n
is len(L)

BISECTION SEARCH
MPLEMENTATION 2

def bisect search2 (L, e):
def bisect search helper(L, e, low, high):
if high == low:

return L[low] == e
mid = (low + high)//2
if L[mid] == e:
return True o
elif L[mid] > e: O ec;a\\
if low == mid: #nothing left to search géﬁ\ (SN
o® Q,C\)
return False C 20
else: o
return |bisect search helper(L, e, low, mid - 1)
else:
return| bisect search helper(L, e, mid + 1, high) el \
. = = SRS\
if len(L) == O0: ,a(\xo we’
return False djﬁﬁ(edﬁs
else:)

return bisect search helper(L, e, 0, len(L) - 1)

6.0001 LECTURE 11 16

COMPLEXITY OF SECOND
BISECTION SEARCH METHOD

" implementation 2 — bisect_search2 and its helper

* O(log n) bisection search calls
* On each recursive call, size of range to be searched is cut in half

* If original range is of size n, in worst case down to range of size 1
when n/(27k) = 1; or when k = log n

* pass list and indices as parameters
* |list never copied, just re-passed as a pointer
* thus O(1) work on each recursive call

* O(log n) * O(1) = O(log n)

LOGARITHMIC COMPLEXITY

def intToStr(i):
digits = '0123456789"
if 1 == 0:
return '0'

result = "'

while 1 > O:
result = digits[1%10] + result
i=1//10

return result

LOGARIT

MIC COMPLEXITY

def intToStr(i):

only have to look at loop as

digits = '0123456789" no function calls
if 1 == oy :
Do within while loop, constant
return 0
reg = ' number of steps

while 1 > O0:

how many times through

res = digits[i%10] + res |oop?

i=1i//10
return result

> how many times can one
divide i by 10?

° O(log(i))

6.0001 LECTURE 11 19

LINEAR COMPLEXITY

= saw this last time

o searching a list in sequence to see if an element is
present

° iterative loops

O() FOR ITERATIVE FACTORIAL

= complexity can depend on number of iterative calls
def fact iter(n):
prod = 1
for 1 in range(l, n+l):
prod *= 1i

return prod

" overall O(n) — n times round loop, constant cost each
time

O() FOR RECURSIVE
FACTORIAL

def fact recur(n):
' assume n >= 0 """
if n <= 1:
return 1
else:
return n*fact recur(n — 1)

= computes factorial recursively

" if you time it, may notice that it runs a bit slower than
iterative version due to function calls

= still O(n) because the number of function calls is linear
in n, and constant effort to set up call

" jterative and recursive factorial implementations are
the same order of growth

6.0001 LECTURE 11 22

LOG-LINEAR COMPLEITY

" many practical algorithms are log-linear

= very commonly used log-linear algorithm is merge sort

= will return to this next lecture

POLYNOMIAL COMPLEXITY

" most common polynomial algorithms are quadratic,
i.e., complexity grows with square of size of input

= commonly occurs when we have nested loops or
recursive function calls

= saw this last time

EXPONENTIAL COMPLEXITY

= recursive functions where more than one recursive
call for each size of problem

o Towers of Hanoi

" many important problems are inherently exponential
o unfortunate, as cost can be high

> will lead us to consider approximate solutions as may
provide reasonable answer more quickly

6.0001 LECTURE 11

25

COMPLEXITY OF TOWERS OF
HANO

= Let t, denote time to solve tower of size n
=t =2t ,+1

= =2(2t ,+1)+1
= =4t ,+2+1

= =42t ,+1)+2+1 Geometric growth

" =8ty ta+24] a= 21+ +2 +1
= =2kt 42K+ 444241 2a=2"+2"1 4+ +2

= =2mh2n2 4 444241 a =2 1
= =2"-1

" so order of growth is O(2")

EXPONENTIAL COMPLEXITY

" given a set of integers (with no repeats), want to
generate the collection of all possible subsets — called
the power set

= {1, 2, 3, 4} would generate
o {}, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4},
{1, 2,3}, {1, 2,4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}

= order doesn’t matter

° 1512511, 23, 31,11, 33,12, 31, {1, 2, 3}, 14}, {1, 4}, {2,
4},{1,2, 4}, (3,4}, {1, 3,4}, {2, 3,4}, {1, 2, 3, 4}

6.0001 LECTURE 11

27

POWER SET — CONCEPT

"we want to generate the power set of integers from 1 ton

" assume we can generate power set of integers from 1 to
n-1

= then all of those subsets belong to bigger power set
(choosing not include n); and all of those subsets with n
added to each of them also belong to the bigger power set
(choosing to include n)

" nice recursive description!

6.0001 LECTURE 11

’ {4}I {1I 4}I {2, 4}I {1I 2)

28

EXPONENTIAL COMPLEXITY

def genSubsets(L):
res = |[]
if len(L) == 0:
return [[]]
smaller = genSubsets(L[:-1])

extra = L[-1:]

new = []

for small in smaller:
new.append(small+extra)

return smaller+new

EXPONENTIAL COMPLEXITY

def genSubsets(L):
res = []

if len(L) == 0:

return [[]]

smaller = genSubsets(L[:-1])

extra = L[-1:]
new = []
for small in smaller:

new.append(small+extra)

return smaller+new

6.0001 LECTURE 11

assuming append is
constant time

time includes time to solve
smaller problem, plus time
needed to make a copy of
all elements in smaller
problem

30

EXPONENTIAL COMPLEXITY

def genSubsets(L):

res = []
if len(L) ==
return [[]]

smaller = genSubsets(L[:-1])

extra = L[-1:]
new = []
for small in smaller:

new.append(small+extra)

return smaller+new

6.0001 LECTURE 11

but important to think
about size of smaller

know that for a set of size
k there are 2* cases

how can we deduce
overall complexity?

31

EXPONENTIAL COMPLEXITY

" let t, denote time to solve problem of size n
" let s, denote size of solution for problem of size n

=t =t ,+s. ,+c(wherecissome constant number of
operations)

"t =t +2"+cC

= =t ,+2"2+c+ 2"+
Thus
= o=t +2"K+ L+ 20+ ke .
computing
n — 0 -1 .
—t0+2 +...+2n + NC pOWer Set IS

= =1+2" +nc 0(2")

6.0001 LECTURE 11 32

COMPLEXITY CLASSES

" O(1) — code does not depend on size of problem

" O(log n) — reduce problem in half each time through
process

= O(n) — simple iterative or recursive programs
" O(n log n) — will see next time
" O(n°) — nested loops or recursive calls

" O(c") — multiple recursive calls at each level

6.0001 LECTURE 11

33

SOME MORE EXAMPLES OF
ANALYZING COMPLEXITY

COMPLEXITY OF
ITERATIVE FIBONACCI

def fib iter(n):

if n == 0: = Best case:
return 0 ok
elif n == 1: dﬁif O(1)
return 1 o\ = Worst case:
else:
fib i = 0 CO(\S@\‘ O(1) + O(n) + O(1) =>» O(n)
fib ii = 1 oM

~for 1 in range(n-1):
tmp = fib i)
fib i = fib ii W
fib ii = tmp + fib ii o

return fib 11

COMPLEXITY OF
RECURSIVE FIBONACCI

def fib recur(n):
" assumes n an int >= 0 """
if n == 0:
return 0
elif n == 1:
return 1
else:
return fib recur(n-1) + fib recur(n-2) 2

= \WWorst case:
0(2")

COMPLEXITY OF RECURSIVE
FIBONACCI

k/// fib(\\\&

fib (fib(
fib (3 fib (2) fib(fib(
/ \
fib(fib (1)

- actually can do a bit better than 2" since tree of
cases thins out to right

= but complexity is still exponential

BIG OH SUMMARY

= compare efficiency of algorithms
* notation that describes growth

* lower order of growth is better
* independent of machine or specific implementation

" use Big Oh
* describe order of growth
* asymptotic notation
* upper bound
* worst case analysis

6.0001 LECTURE 11

40

COMPLEXITY OF COMMON
PYTHON FUNCTIONS

= Lists:n is 1len (L) " Dictionaries: n is 1len (d)
* index O(1) = worst case
e store O(1) e index o(n)
* length O(1) * store O(n)
e append O(1) * length O(n)
* == O(n) * delete O(n)
* remove O(n) * iteration O(n)
° Ccopy O(n) = average case
 reverse O(n) Cindex 0O(1)
* iteration O(n) store 0O(1)
* in list O(n) delete 0(1)
O(n)

MIT OpenCourseWare
https://ocw.mit.edu

6.0001 Introduction to Computer Science and Programming in Python
Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu
https://ocw.mit.edu/terms

