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TODAY

§ 	Classes	of	complexity	

§ 	Examples	characteris;c	of	each	class	
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WHY WE WANT TO UNDERSTAND 
EFFICIENCY OF PROGRAMS

§ 	how	can	we	reason	about	an	algorithm	in	order	to	
predict	the	amount	of	;me	it	will	need	to	solve	a	
problem	of	a	par;cular	size?	

§ 	how	can	we	relate	choices	in	algorithm	design	to	the	
;me	efficiency	of	the	resul;ng	algorithm?	
◦ are	there	fundamental	limits	on	the	amount	of	;me	we	
will	need	to	solve	a	par;cular	problem?	
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ORDERS OF GROWTH: RECAP

Goals:		
§ 	want	to	evaluate	program’s	efficiency	when	input	is	very	big	
§ 	want	to	express	the	growth	of	program’s	run	5me	as	input	
size	grows	
§ 	want	to	put	an	upper	bound	on	growth	–	as	;ght	as	possible	
§ 	do	not	need	to	be	precise:	“order	of”	not	“exact”	growth	
§ 	we	will	look	at	largest	factors	in	run	;me	(which	sec;on	of	
the	program	will	take	the	longest	to	run?)	
§ 	thus,	generally	we	want	5ght	upper	bound	on	growth,	as	
func5on	of	size	of	input,	in	worst	case	
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COMPLEXITY CLASSES: RECAP

§ 	
§ 	
§ 	
§ 	
§ 	
co
§ 	
co
in

O(1)	denotes	constant	running	;me	
O(log	n)	denotes	logarithmic	running	;me	
O(n)	denotes	linear	running	;me	
O(n	log	n)	denotes	log-linear	running	;me	
O(nc)		denotes	polynomial	running	;me	(c	is	a	
nstant)	

O(cn)	denotes	exponen;al	running	;me	(c	is	a	
nstant	being	raised	to	a	power	based	on	size	of	
put)	

6.0001	LECTURE	11	 5	



COMPLEXITY CLASSES 
ORDERED LOW TO HIGH

	

	

	O(1)  :	 	 			constant	
	 								
	O(log n)  :	 	 	logarithmic	
	 								
	O(n)  :	 	 						linear	
	 								
	O(n log n):	 	 			loglinear	
	 								
	O(nc)  :	 	 	polynomial	
	 								
	O(cn)  :	 	 	exponen;al	
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COMPLEXITY GROWTH

CLASS	 n=10	 =	100	 =	1000	 =	1000000	

O(1)	 1	 1	 1	 1	

O(log	n)	 1	 2	 3	 6	

O(n)	 10	 100	 1000	 1000000	

O(n	log	n)	 10	 200	 3000	 6000000	

O(n^2)	 100	 10000	 1000000	 1000000000000	

O(2^n)	 1024	 12676506 1071508607186267320948425049060 Good	luck!!	
00228229 0018105614048117055336074437503
40149670 8837035105112493612249319837881
3205376	 5695858127594672917553146825187

1452856923140435984577574698574
8039345677748242309854210746050
6237114187795418215304647498358
1941267398767559165543946077062
9145711964776865421676604298316

52624386837205668069376	
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CONSTANT COMPLEXITY

§ 	complexity	independent	of	inputs	

§ 	very	few	interes;ng	algorithms	in	this	class,	but	can	
oYen	have	pieces	that	fit	this	class	

§ 	can	have	loops	or	recursive	calls,	but	ONLY	IF	number	
of	itera;ons	or	calls	independent	of	size	of	input	

6.0001	LECTURE	11	 8	



LOGARITHMIC COMPLEXITY

§ 	complexity	grows	as	log	of	size	of	one	of	its	inputs	

§ 	example:	
◦ bisec;on	search	
◦ binary	search	of	a	list	
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BISECTION SEARCH

§ 	suppose	we	want	to	know	if	a	par;cular	element	is	
present	in	a	list	

§ 	saw	last	;me	that	we	could	just	“walk	down”	the	list,	
checking	each	element	

§ 	complexity	was	linear	in	length	of	the	list	

§ 	suppose	we	know	that	the	list	is	ordered	from	
smallest	to	largest	
◦ saw	that	sequen;al	search	was	s;ll	linear	in	complexity	
◦ can	we	do	becer?	
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BISECTION SEARCH

1.  pick	an	index,	i,	that	divides	list	in	half	
2.  ask	if	L[i] == e 
3.  if	not,	ask	if	L[i] is	larger	or	smaller	than	e 
4.   L e 

A	new	version	of	a	divide-and-conquer	algorithm	
§  break	into	smaller	version	of	problem	(smaller	list),	plus	

some	simple	opera;ons	
§  answer	to	smaller	version	is	answer	to	original	problem	

depending	on	answer,	search	leY	or	right	half	of for	
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BISECTION SEARCH 
COMPLEXITY ANALYSIS


§ 	finish	looking
through	list	
when		

				1	=	n/2i		

				so	i	=	log	n	

	
	 §	 complexity	of	

recursion	is	
O(log	n)	–	
where	n	is	len(L)	
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BISECTION SEARCH 
IMPLEMENTATION 1

def bisect_search1(L, e):!

    if L == []:!

        return False!

    elif len(L) == 1:!

        return L[0] == e!

    else:!

        half = len(L)//2!

        if L[half] > e:!

            return bisect_search1( L[:half], e)!

        else:!

            return bisect_search1( L[half:], e)!
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COMPLEXITY OF FIRST 
ETHOD
BISECTION SEARCH M

§ 	implementa5on	1	–	bisect_search1	
•  	O(log	n)	bisec;on	search	calls	

ll,	size	of	range	to	be	searched	is	cut	in	half	
	size	n,	in	worst	case	down	to	range	of	size	1	
	when	k	=	log	n	
;on	search	call	to	copy	list	
	up	each	call,	so	do	this	for	each	level	of	

(n	log	n)	
eful,	note	that	length	of	list	to	be	
d	on	each	recursive	call	
ost	to	copy	is	O(n)	and	this	dominates	the	log	
ursive	calls	
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•  On	each	recursive	ca
•  If	original	range	is	of
when	n/(2^k)	=	1;	or

• O(n)	for	each	bisec
•  This	is	the	cost	to	set
recursion		

• O(log	n)	*	O(n)	à	O
•  	if	we	are	really	car
copied	is	also	halve
•  turns	out	that	total	c
n	cost	due	to	the	rec



BISECTION SEARCH 
ALTERNATIVE


§ 	s;ll	reduce	size	of	
problem	by	factor	
of	two	on	each	step	
§ 	but	just	keep	track	
of	low	and	high	
por;on	of	list	to	be	
searched	
§ 	avoid	copying	the	
list	
	
§ 	complexity	of	
recursion	is	again	
O(log	n)	–	where	n	
is	len(L)	
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def bisect_search2(L, e):!
    def bisect_search_helper(L, e, low, high):!
        if high == low:!
            return L[low] == e!
        mid = (low + high)//2!
        if L[mid] == e:!
            return True!
        elif L[mid] > e:!
            if low == mid: #nothing left to search!
                return False!
            else:!
                return bisect_search_helper(L, e, low, mid - 1)!
        else:!
            return bisect_search_helper(L, e, mid + 1, high)!
    if len(L) == 0:!
        return False!
    else:!
        return bisect_search_helper(L, e, 0, len(L) - 1)!
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BISECTION SEARCH 
IMPLEMENTATION 2




COMPLEXITY OF SECOND 
BISECTION SEARCH METHOD

§ 	implementa5on	2	–	bisect_search2	and	its	helper	
• O(log	n)	bisec;on	search	calls	
•  On	each	recursive	call,	size	of	range	to	be	searched	is	cut	in	half	
•  If	original	range	is	of	size	n,	in	worst	case	down	to	range	of	size	1	
when	n/(2^k)	=	1;	or	when	k	=	log	n	

• pass	list	and	indices	as	parameters	
•  list	never	copied,	just	re-passed	as	a	pointer	
•  thus	O(1)	work	on	each	recursive	call	
• O(log	n)	*	O(1)	à	O(log	n)	
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LOGARITHMIC COMPLEXITY

def intToStr(i):!
    digits = '0123456789'!
    if i == 0:!
        return '0'!
    result = ''!
    while i > 0:!
        result = digits[i%10] + result!
        i = i//10!
    return result!

!
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LOGARITHMIC COMPLEXITY

def intToStr(i):! 	 only	have	to	look	at	loop	as	

no	func;on	calls	

	 within	while	loop,	constant	
number	of	steps	

	 how	many	;mes	through	
! loop?	

◦  how	many	;mes	can	one	
divide	i	by	10?	

◦ O(log(i))	

    digits = '0123456789'!
    if i == 0:!
        return '0'!
    res = ''!
    while i > 0:!
        res = digits[i%10] + res
        i = i//10!
    return result!
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LINEAR COMPLEXITY

§ 	saw	this	last	;me	
◦  	searching	a	list	in	sequence	to	see	if	an	element	is	
present	

◦  	itera;ve	loops	
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O() FOR ITERATIVE FACTORIAL

er	of	itera;ve	calls	

):!

p,	constant	cost	each	

§ 	complexity	can	depend	on	numb
def fact_iter(n):!

    prod = 1!

    for i in range(1, n+1

        prod *= i!

    return prod!

§ 	overall	O(n)	–	n	;mes	round	loo
;me	
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O() FOR RECURSIVE 
FACTORIAL

def fact_recur(n):!
    """ assume n >= 0 """!
    if n <= 1: !
        return 1!
    else: !
        return n*fact_recur(n – 1)!

	
t	runs	a	bit	slower	than	
	calls	
f	func;on	calls	is	linear	
p	call	
l	implementa;ons	are	

22	

§ 	computes	factorial	recursively	
§ 	if	you	;me	it,	may	no;ce	that	i
itera;ve	version	due	to	func;on
§ 	s;ll	O(n)	because	the	number	o
in	n,	and	constant	effort	to	set	u
§ 	itera5ve	and	recursive	factoria
the	same	order	of	growth	
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LOG-LINEAR COMPLEITY


is	merge	sort	

§ 	many	prac;cal	algorithms	are	log-linear	

§ 	very	commonly	used	log-linear	algorithm	

§ 	will	return	to	this	next	lecture	
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POLYNOMIAL COMPLEXITY

§ 	most	common	polynomial	algorithms	are	quadra;c,	
i.e.,	complexity	grows	with	square	of	size	of	input	

§ 	commonly	occurs	when	we	have	nested	loops	or	
recursive	func;on	calls	

§ 	saw	this	last	;me	
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EXPONENTIAL COMPLEXITY

§ 	recursive	func;ons	where	more	than	one	recursive	
call	for	each	size	of	problem	
◦ Towers	of	Hanoi	

§ 	many	important	problems	are	inherently	exponen;al	
◦ unfortunate,	as	cost	can	be	high	
◦ will	lead	us	to	consider	approximate	solu;ons	as	may	
provide	reasonable	answer	more	quickly	
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COMPLEXITY OF TOWERS OF 
HANOI

§ 	Let	tn		denote	;me	to	solve	tower	of	size	n	
§ 	tn	=	2tn-1	+	1	
§ 					=	2(2tn-2	+	1)	+	1	
§	  				=	4tn-2	+	2	+	1	
§ 					=	4(2t 	+	1)	+	2	+	1	 Geometric	growth	

n-3
	

§ 					=	8tn-3	+	4	+	2	+	1	 a	=											2n-1	+	…			+	2		+	1	
§ 					=	2k	t k-

n-k	+	2 1	+	…	+	4	+	2	+	1	 2a	=	2n	+	2n-1		+	...	+	2	
a			=	2n																												-	1	§ 					=	2n-1	+	2n-2	+	...	+	4	+	2	+	1	

§ 					=	2n	–	1	
§	 so	order	of	growth	is	O(2n)	
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EXPONENTIAL COMPLEXITY

§ 	given	a	set	of	integers	(with	no	repeats),	want	to	
generate	the	collec;on	of	all	possible	subsets	–	called	
the	power	set	

§ 	{1,	2,	3,	4}	would	generate	
◦  {},	{1},	{2},	{3},	{4},	{1,	2},	{1,	3},	{1,	4},	{2,	3},	{2,	4},	{3,	4},	
{1,	2,	3},	{1,	2,	4},	{1,	3,	4},	{2,	3,	4},	{1,	2,	3,	4}	

§ 	order	doesn’t	macer	
◦  {},	{1},	{2},	{1,	2},	{3},	{1,	3},	{2,	3},	{1,	2,	3},	{4},	{1,	4},	{2,	
4},	{1,	2,	4},	{3,	4},	{1,	3,	4},	{2,	3,	4},	{1,	2,	3,	4}	
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POWER SET – CONCEPT 

§ we	want	to	generate	the	power	set	of	integers	from	1	to	n
§ 	assume	we	can	generate	power	set	of	integers	from	1	to	
n-1	
§ 	then	all	of	those	subsets	belong	to	bigger	power	set	

all	of	those	subsets	with	n	
long	to	the	bigger	power	set	

(choosing	not	include	n);	and	
added	to	each	of	them	also	be
(choosing	to	include	n)	
§ 	{},	{1},	{2},	{1,	2},	{3},	{1,	3},	{2,	3},	{1,
4},	{3,	4},	{1,	3,	4},	{2,	3,	4},	{1,	2,	3,	4}	

	

	2,	3},	{4},	{1,	4},	{2,	4},	{1,	2,	

	
§ 	nice	recursive	descrip;on!	
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EXPONENTIAL COMPLEXITY

def genSubsets(L):!
    res = []!
    if len(L) == 0:!
        return [[]] #list of empty list!
    smaller = genSubsets(L[:-1]) # all subsets without 

 last element
last element!
    extra = L[-1:] # create a list of just
    new = []!
    for small in smaller:!
        new.append(small+extra)  # for all smaller 
solutions, add one with last element!
    return smaller+new  # combine those with last 
element and those without!
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EXPONENTIAL COMPLEXITY

	 assuming	append	is	
constant	;me	

	 ;me	includes	;me	to	solve	
smaller	problem,	plus	;me	

    smaller = genSubsets(L[:-1])! needed	to	make	a	copy	of	
    extra = L[-1:]! all	elements	in	smaller	
    new = []! problem	
    for small in smaller:!
        new.append(small+extra)!
    return smaller+new!

	

def genSubsets(L):!
    res = []!
    if len(L) == 0:!
        return [[]] !
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EXPONENTIAL COMPLEXITY

def genSubsets(L):! 	 but	important	to	thin
    res = []! about	size	of	smaller	
    if len(L) == 0:!

k	

        return [[]] ! 	 know	that	for	a	set	of	size	
    smaller = genSubsets(L[:-1])! k	there	are	2k	cases	
    extra = L[-1:]!
    new = []! 	 how	can	we	deduce	
    for small in smaller:! overall	complexity?	
        new.append(small+extra)!
    return smaller+new!

	

6.0001	LECTURE	11	 31	



EXPONENTIAL COMPLEXITY

§ 	let	tn	denote	;me	to	solve	problem	of	size	n	

§ 	let	sn	denote	size	of	solu;on	for	problem	of	size	n	

§ 	tn	=	tn-1	+	sn-1	+	c	(where	c	is	some	constant	number	of	
opera;ons)	

§ 	tn	=	tn-1	+	2n-1	+	c	
§ 					=	tn-2	+	2n-2	+	c	+	2n-1	+	c	

Thus	
§	  				=	tn-k	+	2n-k	+	…	+	2n-1	+	kc	 compu;ng	
§ 					=	t0	+	20	+	...	+	2n-1	+	nc	 power	set	is		
§ 					=	1	+	2n		+	nc	 O(2n)	
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COMPLEXITY CLASSES

§ 	O(1)	–	code	does	not	depend	on	size	of	problem	

§ 	O(log	n)	–	reduce	problem	in	half	each	;me	through	
process	

§ 	O(n)	–	simple	itera;ve	or	recursive	programs	

§ 	O(n	log	n)	–	will	see	next	;me	

§ 	O(nc)	–	nested	loops	or	recursive	calls	
§ 	O(cn)	–	mul;ple	recursive	calls	at	each	level		
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SOME MORE EXAMPLES OF 
ANALYZING COMPLEXITY
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COMPLEXITY OF  
ITERATIVE FIBONACCI

def fib_iter(n):! §     if n == 0:! 	Best	case:	
        return 0! O(1)	
    elif n == 1:!
        return 1! § 	Worst	case:	
    else:! O(1)	+	O(n)	+	O(1)	è	O(n)	        fib_i = 0!
        fib_ii = 1! 	
        for i in range(n-1):!
            tmp = fib_i!
            fib_i = fib_ii!

  fib_ii = tmp + fib_ii!
turn fib_ii !

          
        re
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COMPLEXITY OF  
RECURSIVE FIBONACCI

def fib_recur(n):!
    """ assumes n an int >= 0 """!
    if n == 0:!
        return 0!
    elif n == 1:!
        return 1!
    else:!
        return fib_recur(n-1) + fib_recur(n-2)!
 

§ 	Worst	case:	
O(2n)	
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COMPLEXITY OF RECURSIVE 
FIBONACCI 
 fib(5) 

 

 fib(4) fib(3) 

 

 fib(3) fib(2) fib(2) fib(1) 

 

 fib(2) fib(1) 

§ 	actually	can	do	a	bit	becer	than	2n	since	tree	of	
cases	thins	out	to	right		
§ 	but	complexity	is	s;ll	exponen;al	
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BIG OH SUMMARY

§ 	compare	efficiency	of	algorithms	
•  	nota;on	that	describes	growth	
•  	lower	order	of	growth	is	becer	
•  	independent	of	machine	or	specific	implementa;on	

§ 	use	Big	Oh	
•  	describe	order	of	growth	
•  	asympto5c	nota5on	
•  	upper	bound	
•  	worst	case	analysis	
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COMPLEXITY OF COMMON 
PYTHON FUNCTIONS


 § 	Lists:	n is	len(L) § 	Dic;onaries:	n is	len(d)
•  	index	 	O(1)	 §	 worst	case	
•  	store	 	O(1)	 •  	index	 	O(n)	
•  	length	 	O(1)	 •  	store	 	O(n)	
•  	append	 	O(1)	 •  	length	 	O(n)	
•  	==		 	O(n)	 •  	delete	 	O(n)	
•  	remove	 	O(n)	 •  	itera;on	 	O(n)	
•  	copy	 	O(n)	 §	  	average	case	
•  	reverse	 	O(n)	 •  	index	 	O(1)	
•  	itera;on	 	O(n)	 •  	store	 	O(1)	
•  	in	list 	O(n)	 •  	delete	 	O(1)	

•  	itera;on	 	O(n)	
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