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Today: 

• Markov Perfect Equilibrium. 

• A discussion on why dynamic games is different from repeated games. Indirectly, this is a discussion 
on the difference between political economy and game theory. 

Picking from where we left off last week... Recall that our focus was on infinite horizon multistage games 
with observed actions. 

Definition 1. An infinite horizon multistage game with observed actions is an extensive form game 
where: 

• Set of players I is finite. 

1• At stage t = 0, 1, 2, ... player i ∈ I chooses ait ∈ Ait. 

• All players observe stage t actions at = (a1t, . . . , a|I|t) before choosing stage t + 1 actions. 

• Players’ payoffs are some function of the action sequence: ui(a0, a1, ...). Typically, it is in the dis-
counted sum form, i.e. 

∞X 
δt ui = uit(at) 

t=0 

Markov Perfect Equilibrium 

The Markov Perfect Equilibrium (MPE) concept is a drastic refinement of SPE developed as a reaction to 
the multiplicity of equilibria in dynamic problems. (SPE doesn’t suffer from this problem in the context 
of a bargaining game, but many other games -especially repeated games- contain a large number of SPE.) 
Essentially it reflects a desire to have some ability to pick out unique solutions in dynamic problems. 

Payoff-Relevant Variables 

After seeing examples where SPE lacks predictive power, people sometimes start to complain about un-
reasonable “bootstrapping” of expectations. Suppose we want to rule out such things. One first step to 
developing such a concept is to think about the minimal set of things we must allow people to condition on. 
Often, there is a natural set of payoff-relevant variables. 

Example 1. Exploitation of Common Resources (or Common Pool Games, as Daron’s notes put it). 

1I’m also allowing Ait = ∅, so it’s possible that a player does not move at time t. 
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1 2 N+1 1 2 N+1 1 2 N+1• N +1 fishermen choose quantities/consumptions (c0, c0, . . . , c ), (c1, c1, c ), ..., (c , c , . . . , c ).0 1 t t t PN+1 i• Stock of fish grows by Kt+1 = AKt − c where A > 0 and K0 is given. i=1 t 

• Player i’s utility is 
∞X 

i ui = βt log(c )t
t=0 

With unrestricted strategy spaces, anything could happen with patient agents. This is because either fisher-
man can fish to extinction in the next period, and construct an equilibrium using it as a threat point. 

iOn the other hand, Markov approach allow c to depends only on Kt, and not on how we got there. t 

Example 2. Saving with Time Inconsistent Preferences. 

• Suppose that the consumer chooses consumption (ct)t=0,1,..., such that 

At+1 = (At − ct)(1 + rt) 

Suppose 
∞X 

δs ut(ct, ct+1, ...) = v(ct) + β v(ct+s) 
s=1 

with δ, β ∈ (0, 1). 

• We can think about this as a consumer playing a game against her future selves. (Makes it a game 
with infinitely many players, but results still go through.) 

• In this game, we can construct SPE’s where any consumption stream is possible. This is because any 
player can punish a deviation by consuming everything. 

Clearly we would like a solution concept that eliminates such punishments, and have a solution more like a 
“repeated static NE”. 

Definition, Notation and Examples 

Let G be a multistage game with observed actions, i.e. at time t = 0, 1, 2, . . . some subset of players simul-
taneously choose actions and all previous actions are observed before these choices are made. 

Definition 2. Period t histories ht and (h0)t
0 
are said to be Markov equivalent, ht ∼ (h0)t

0 
, if for any 

two action sequences {αs}∞ and {βs}∞ of present and future action profiles and for all i:s=0 s=0 

gi(h
t , {αs}) ≥ gi(h

t , {βs}) ⇐⇒ gi((h
0)t

0 

, {αs}) ≥ gi((h
0)t

0 

, {βs}). 

Intuitively, two histories are Markov equivalent when the relative preferences over future actions are identi-
cal. Note that we allow payoffs to be scaled differently but want decision making to be the same. 

Some examples: 

• In the common resource game, any two histories ht , (h0)t
0 
with the same number of fish (St = St

0 
0 ) are 

Markov equivalent. 

• In the savings game, any two histories ht , (h0)t
0 
with the same size of wealth (At = At

0 
0 ) are Markov 

equivalent. 

• Suppose in savings game, the action is αt ∈ [0, 1]: the fraction of wealth to consume. If v(c) = log(c), 
then any two histories are Markov equivalent. 

• In a repeated game, any two histories are Markov Equivalent. 
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• In the divide-and-rule model, any two histories which end up with the same state (K or D) are Markov 
equivalent. Indeed, in almost all of the dynamic game models we covered in class, the definition of 
what a state is will be obvious. (More on this later.) 

Let H = ∪tHt and Ai = ∪tAit. Recall that a strategy is a function si : H → Ai. 

Definition 3. A Markov strategy is a function 

si : H → Ai 

such that 
si(h

t) = si((h
0)t

0 

) 

whenever ht ∼ (h0)t
0 
. 

Definition 4. A Markov Perfect Equilibrium of G is a SPE of G in which all players use Markov 
strategies. 

Note that an effect of this refinement is: it declares past to be irrelevant as long as present value of payoff-
relevant variables to be the same. This essentially eliminates the effect of punishments. 

Here’s an existence result: 

Proposition 1. A MPE exists in any finite multistage game with observed actions, and in infinite horizon 
games whose payoffs are continuous at ∞. 

And here’s another result which (in a loose sense) suggests that Markov strategies are self-enforcing: 

Proposition 2. If all other players use Markov strategies, then the remaining player has a Markov strategy 
among her (unrestricted) best responses. 

This result holds because when the other players are not conditioning on irrelevant things (past play), then 
you do not have to condition on irrelevant things either. 

Does MPE fix the problems we started with? 

• In some cases, yes. For instance, for a repeated game, Markov Perfect Equilibria are NE for the static 
game, repeated each period. 

• Similarly, in the divide-and-rule model there are many SPE (where the ruler can condition punishments 
on the past behavior) but a unique MPE. 

• In other cases, it may be tricky. For instance, in the common resources game, if the stock of fish grows 
in a deterministic manner, then one can still do punishments (e.g. “if number of fish is not exactly 137 
we’ll catch everything tomorrow.”) Putting some noise in the stock of fish sometimes fixes this, but 
there is no general rule which asserts that it always will. 

• In the consumption game, Markov + log utility is much more powerful than Markov alone. In the log 
utility, each self t chooses an αt ∈ [0, 1], which is the fraction of wealth to consume. The only Markov 
Perfect Equilibrium in this game is α∗, which solves: 

∞X 
α ∗ = arg max log(αAt) + β δs log(α ∗ At+s)

α 
s=1 

where the law of motion is given by: 

At+s = (1 − α)At(1 + r)s(1 − α ∗ )s−1 
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substituting, rearranging and dropping constant terms, we have: 
∞X 

α ∗ = arg max log(α) + β δs log(1 − α)
α 

s=1 

which implies: 
1 − δ 

α ∗ = 
1 − δ + βδ 

Dynamic Games 

A good resource on dynamic games is the supplementary material by Daron I posted last week. You should 
really go check it, but let me briefly emphasize the concept of a dynamic game. From that document: 

The difference between dynamic games and infinitely repeated games is that in dynamic games, 
there is an underlying state, which evolves over time as a result of the actions by players and by 
nature. 

So, long story short, a dynamic game makes our lives easier by explicitly giving us the state. Otherwise, 
we’d need to come up with the definition of a state and it’s not always obvious. (There is a long discussion 
here on the possibility of defining the set of all histories as the set of states – this would allow us to make 
everything Markovian in an uninteresting way. I don’t want to go into this discussion, partly because it’s 
confusing and partly because it’s not necessary for this class. For this class, if there’s a state given, you 
should use it!) 

So a dynamic game has a set of states K, a set of actions Ai(k) for each k ∈ K, and a (per-period) utility 
function: 

ui : A × K → R 

along with a Markovian transition function: 

q(kt+1|at, kt) 
A history in this context will be the list of actions and states so far: 

ht = (a0, k0, a1, k1, . . . , at, kt) 

Just for the sake of comparison with the definition made at the beginning, a dynamic game is a game where: 

• Set of players I is finite. 

• At stage t = 0, 1, 2, ... player, if state is k ∈ K, i ∈ I chooses ait ∈ Ai(k). 

• All players observe stage t actions at = (a1t, . . . , a|I|t) before choosing stage t + 1 actions. 

• Players’ payoffs are 
∞X 

ui = E[ δt ui(at, kt)] 
t=0 

This definition is very similar to the definition of a multistage game, but there is more of a sense of stationarity 
here. (Everything that’s time dependent is now taken care of via the states!) 

A (pure) strategy for player i in a dynamic game is: 

si : H × K → Ai 

Whereas a (pure) Markov strategy is: 
si : K → Ai 

Now, with some contemplation, you should be able to realize that the Markov strategy I define here is really 
Markov in the sense of Definition 2. (This is because of the stationary nature of the game!) 
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Dynamic Games vs Repeated Games 

Existential question time: Why are we doing all these? 

The analysis of games with discounting has been a focus of game theoretic analysis for years. They have 
tons of results (folk theorems, reputation results etc.) What are we learning new from all of these analysis? 

I’d go on to argue that the broad implications are vastly different. A standard game theoretical model 
argues that in short term relationships (one-shot and finite horizon games) have a difficult time sustaining 
cooperation among players. A standard folk theorem result basically says that “In an infinite horizon game, 
with sufficiently patient players (i.e. with more frequent interactions of a longer expected life) we can sustain 
cooperation.” This is a pretty robust insight which all of these game theoretical analysis builds upon. In a 
dynamic game, this insight can be overturned. 

As an example, consider the “Constitutional Choice Game” example – a favorite example of Daron. There 
are three states: absolutism a, constitutional monarchy c, and full democracy d. There are two agents: elite 
E and middle class M . The per period payoffs are: 

uE (d) < uE (a) < uE (c) 

uM (a) < uM (c) < uM (d) 

Assume that E rules in a (i.e. they decide on which state to move to) and M rules in c and d. Suppose the 
initial state is a. 

It is clear that a move from a to c is a Pareto improvement: both groups are better off. Consequently, a 
is not Pareto efficient whereas c and d are. Do we obtain a Pareto improvement in equilibrium, are are we 
stuch with a? (Read: when do the elites extend the francise?) 

The answer is: whenever elites are not patient, we end up in a Pareto efficient state. In particular, staying 
in a yields a payoff of 

1 
uE (a)

1 − β 

to the elites. When they move to c, they realize that the next period M will move to d and they’ll stay there 
forever. The payoff is: 

β 
uE (c) + uE (d)

1 − β 

Clearly, a move to c (and eventually d) occurs when 

β 1 uE (a) − βuE (d) 
uE (c) + uE (d) ≥ uE (a) ⇔ uE (c) ≥ 

1 − β 1 − β 1 − β 

which is true for sufficiently low β! 

This is a simple and interesting “flip” on our intuition about the cooperation (i.e. obtaining the Pareto 
efficient outcome) in general. Indeed, Daron builds his 14.773 lectures based on this intuition – so if you 
want to see more, take 14.773! 

Also, Daron has a paper titled “Why not a Political Coase Theorem?” (2013) investiagting this issue in 
depth – you can check it if interested. 
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