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L9. GMM UNDER MODERATELY HIGH DIMENSIONS 

´VICTOR CHERNOZHUKOV AND IV ́ ANDEZ-VAL AN FERN 

Abstract. Here we discuss the issues that arise in GMM under increasing dimension. This 
is not an easy material. 

1. Introduction 

For the moment function 
g(θ) := Eg(X, θ), 

we assume that the true parameter value of interest θ0 ∈ Θ ⊂ Rdθ satisfes: 
g(θ0) = 0. 

We have data {Xi}n , which are identical copies of X , and, as a leading case we assume i=1
that they are also independent (i.i.d.). We form the empirical moment function: 

ĝ(θ) = Eng(Xi, θ). 

Then our estimator θ̂ of θ0 is 
θ̂ ∈ arg min ĝ(θ)0Âĝ(θ), (GMM) 

θ∈Θ 

where Â is a positive-defnite matrix, possibly data-dependent, that converges to a non-
stochastic positive-defnite matrix A. We claimed that under some conditions 

a
θ̂ ∼ N(θ0, V/n). 

To what extent does this result hold when the dimension of θ is high or when the 
number of moments considered is high? 

2. GMM problems that separate in many low-dimensional GMM problems 

One case that is particularly nice is when the GMM problem can be disintegrated into 
many low dimensional problems, and we treat each in the limited information framework. 
For example, when we ran distribution regressions at multiple threshold values, the di-
mension of all the parameters stacked together was quite high. Was this a problem? No, it 
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turns out that we can handle very many low-dimensional problems in this way. Formally, 
the number of problems p could be very high but with the mild requirement that: 

(log p)7/n → 0. (2.1) 

Formally, suppose that θ = (θ1
0 , ..., θ0 )0, where each θj is a low dimensional parameter, p

namely dim θj is bounded as n →∞, for a GMM problem indexed by j = 1, ..., p. Assume 
that the GMM estimator θ̂ = (θ̂10 , ..., θ̂0 )0 obeys the asymptotic linearization property: p

nX√ 
n(θ̂j − θj) = √ 

1 
ϕj (Xi) + rj , 

n 
i=1 infuence function remainder 

where the remainder can be shown to be small 

max krj k = op(1/ log p). 
j≤p 

Conditions for such linearization are weak. Recall that for GMM, the infuence function is 

ϕj (Xi) = −(G0 j Aj Gj )
−1Gj 

0 Aj gj (Xi, θ0j ), 

where the index j signifes the dependence of the usual quantities on the j-th problem. 
Conditions on the remainder terms can also be established under mild conditions. 

Then it turns out that under some technical moment conditions and (2.1) we can still 
claim that 

a√ 
n(θ̂ − θ0) ∼ N(0, V ), (2.2) 

but in the sense that ���P( √ 
n(θ̂ − θ0) ∈ A) − P(N(0, V ) ∈ A) 

���→ 0,sup 
A∈R P

j=1where R is the collection of rectangular sets inR 
p dim θj . The distinction that it holds for 

rectangular sets is important in very high dimensions, as the result is not true for elliptical 
regions or other convex regions. 

For inference purposes, we can also employ bootstrap or at least quick bootstrap, where 
we bootstrap the estimated infuence functions. These results follow from central limit 
theorems and bootstrap results for high dimensional vector means or approximate means 
developed in [3]. 

3. GMM problems that do not separate into low-dimensional problems 

We study now the situation where the number of parameters or the number of moments 
is large. This case includes nonlinear least squares or M-estimation problems with many 
regressors, and the Arellano-Bond estimator for linear panel models with sequential exo-
geneity and large T . 
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We partition the parameter vector as: 

θ = (α0, γ0)0 , θ0 = (α
0 
0, γ0

0 )0 , 

where α is the target parameter and γ is the nuisance parameter, and α0 and γ0 are their 
respective true values. 

The dimension of α is low, the dimension of γ is high. We approximate this situation 
as p = dim(γ) → ∞ as n → ∞, while d = dim(α) is fxed. Also the number of moments 
used in GMM, m = dim(g(Xi, θ0)), could be high, so we can approximate this situation as 
m →∞ as n →∞. 

Assertion 1 (GMM Inference with Moderately Many Parameters and Moments). There 
exist regularity conditions such that if the square of the dimensionality of the nuisance param-
eter and the number of moments is small compared to the sample size, namely that: 

(p + m)2/n → 0 as n →∞, 

then the approximate normality and consistency results continue to hold: 
√ a
n(α̂ − α) ∼ N(0, V11), 

where V11 is the upper-left block of V in (2.2). 

Remark 1. Suÿcient conditions are given, for example, by [7] for GMM problems with 
m → ∞ and p is fxed; and by [5, 4] for nonlinear panel data models where m ∝ p → ∞. 
For exactly identifed exogeneous linear models, this condition can often be improved to 
requiring that the dimension is small compared to the sample size, p/n → 0. For exoge-
nous linear models, very strong results were obtained in a sequence of papers by [6, 1, 2], 
which also cover the case where p/n → c > 0, which gives rise to additional terms in the 
variance formula. � 

The result above has a simple practical message: in nonlinear models or models with 
2 2endogeneity, p and m should be small compared to n. For example, we saw that in 

Arellano-Bond approach the number of moments m = O(T 2), which could be too large 
relative to the sample size nT . This seems to be binding in the second empirical example 
that we considered where n = 147 and T = 19. This practical rule may be too rough as 
a guide in some applications. In such cases we may carry out Monte-Carlo experiments, 
using data-generating processes that mimic the empirical settings one is facing, to see how 
the methods perform. 

To understand Assertion 1, let us focus on the case where p = m. An asymptotic second 
order expansion of α̂ around α0 gives 

√ 
α̂− α0 = Zn/ n + b/n + rn, 
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awhere Zn ∼ N(0, V11), b = O(p) is a frst order bias term, and rn is the higher order 
remainder such as rn = Op((p/n)

3/2 + p1/2/n). Then, 
√ a
n(α̂ − α0) ∼ N(0, V11) 

if both √ 
nb/n → 0, i.e. p 2/n → 0, 

and √ 
nrn →P 0, i.e. p 3/2/n → 0. 

Example 1 (A Contrived Example). Suppose that we are interested in the parameter α = 
γ0γ, and α0 = γ0

0 γ0 = 1. Suppose also that γ̂ − γ0 = Gn ∼ N(0, Ip/n). Then the α̂ = γ̂0γ̂
obeys an exact Taylor expansion: 

√ p
α̂− α0 = 2γ0

0 Gn + G0 Gn = Zn/ n + + rn,n n 

where Zn ∼ N(0, 4), and nG0 Gn ∼ χ2. Then, EG0 Gn = p/n, and rn = G0 Gn − p/n obeys n p n np
2Er . p1/2/n, so that rn = OP (p

1/2/n) by Markov inequality. �n 

This example shows that the bias is the bottleneck. If we remove the bias somehow, then 
we can improve the requirement from p2/n → 0 to a weaker condition. 

There are several ways of removing the bias: 

a) Analytical bias correction, where we estimate b/n using analytical expressions for 
the bias and set 

α̌ = α̂− ̂b/n. 

In Example 1 above, the bias corrected estimator is just α̂ − p/n, but the 
expressions are much more complex in real problems. 

b) Split-sample bias correction, where we split the sample into two parts, compute 
1 1the estimator on the two parts α̂(1) and α̂(2), then set ᾱ = α̂(1) + α̂(2), and 2 2 

then set 
α̌ = α̂− (ᾱ − α̂) = 2α̂ − α. ¯

Here we can average over many splits to reduce variability, and it is also possi-
ble to use the bootstrap and leave-one-out methods for bias correction. 

Why does the sample-splitting method work? The frst order biases of α̂, α̂(1), and α̂(2) 
are 

b b b 
, , , 

n n/2 n/2
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so that the frst order bias of α̌ is � � � � �� 
b 1 b 1 b 
2 − + = 0. 
n 2 n/2 2 n/2 

With the bias correction, the resulting side conditions are weaker. 

Assertion 2 (Bias-Corrected GMM Inference with Moderately Many Parameters and 
Moments). There exist regularity conditions such that if the dimensionality and the number 
of moments is small compared to the sample size, namely that: 

(p + m)3/2/n → 0 as n →∞, 

then the approximate normality and consistency results for the bias-corrected GMM estimator 
continue to hold: √ a

n(α̌ − α) ∼ N(0, V11), 

where V11 is the upper-left block of V in (2.2). 
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