
  
Victor Chernozhukov and Ivan Fernandez-Val. 14.382 Econometrics. Spring 2017. Massachusetts Institute
of Technology: MIT OpenCourseWare, https://ocw.mit.edu. License: Creative Commons BY-NC-SA.

14.382 L10. NONLINEAR PANEL DATA 

VICTOR CHERNOZHUKOV AND IV AN´  FERNANDEZ- ´ VAL 

Abstract. We discuss bias corrections to deal with the incidental parameter problem in 
fixed effects estimation of nonlinear panel data models. 

1. The Model 

The model that we consider will be both nonlinear and dynamic, since once we allow 
for nonlinearities, we might as well consider dynamics as a form of nonlinearity. The 
model will be semiparametric, where we specify the distribution of the outcome yk,t for 
individual k at time t, given the information set It, as: 

yk,t | Ik ∼ f(· | xk,t, α, ak, bt), t = 1, . . . , T, k = 1, . . . , N, (1.1) 

where It represents the information available up to time t, including all past lags of the 
dependent variable as well as contemporaneous and past lags of the “controls”. 

The function f(· | xk,t, α, ak, bt) represents a parametric pdf or pmf of yk,t conditional 
on xkt, which can include lagged outcomes yk,t 1, ..., yk,t J and the set of other observed − −
controls wk,t, the unobserved individual effect ak, and the unobserved time effect bt. The 
nonparametric part of the model is the distribution of the individual and time effects. This 
distribution is left completely unrestricted by treating the individual and time effects as 
parameters to be estimated in the so-called fixed effects approach. The main appeal of this 
approach is that it does not impose any restriction in the relationship between the unob­
served effects and observed controls. 

The target parameter will be α and ak and bt represent the individual “fixed effect” 
and the time “fixed effect,” respectively. Thus, the overall parameter vector is 

  β := (α/, γ/)/ := (α, (ak)N
/
, (bt)T

/
k=1 t=1 )

/,

with    β0 := (α0
/ , γ0

/ )/ := (α0, (a/ )N
/  (b/ T /

0k k=1 , 0t)t=1 )
/ denoting the true value of the parame­

ter. Since there are N observations depending on each time effect and T depending on 
each individual effect, and the model is nonlinear, we can not hope to estimate consis­
tently the parameters without having both N and T large. Thus we must rely N and 
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T being large, formally 
N → ∞, T → ∞. 

But in this case we have a large number of parameters, N individual effects and T time 
effects. The problem of having that many nuisance (non-target) parameters is called 
the incidental parameter problem. 

Unlike in linear models, the requirements on data are substantial, as we can no longer 
afford arbitrary dependence of the observations across time. Thus, the statement of the 
model (1.1) contains the strong assumption that the dependence on the past information 
It for individual k can be captured by (xkt, ak, bt), which includes J lags of the dependent 
variable, the contemporaneous observed controls and unobserved individual effect for in­
dividual k, and the contemporaneous time effect. This is an important assumption that 
yields simplifications in the limit distribution, since it makes the scores of the problem con­
ditionally uncorrelated across t. This assumption also means that our modeling has also 
implicitly taken care of “clustering”, namely that we have captured all of the relevant de­
pendence for a given unit k by putting in enough lags of the dependent variable. Whether 
this is a good approximation to the real world or not is an empirical matter. Finally, we 
also assume that the data are independent across units k conditional on the unobserved 
time effects. The inclusion of the time effects is therefore a parsimonious way to capture 
cross sectional dependence induced for example by aggregate shocks. 

As an example, consider a binary outcome yk,t taking values 0 and 1. The first-order 
dynamic binary response model specifies the conditional probability: 

P{yk,t = 1 | It} = F (x/k,tα + ak + bt), (1.2) 

where F is the parametric link function, for example, the standard normal or logistic dis­
tributions, and xk,t is a vector of transformations of yk,t 1 and wk,t. To give some context, −
in the empirical application of Section 3, yk,t is an indicator of labor force participation by 
woman k in year t, yk,t −1 is an indicator of labor force participation in the previous year 
t − 1, and wk,t is the set of controls including age, husband’s income and several indicators 
for number of kids of different ages. In this application, N ≈ 1, 000 and T ≈ 10. 

As in the binary response models of L6, in addition to the parameter α, we might be 
interested in the APE, 

�N  �T  
1  

θ0 =

�
Δk,t(x, β0)dM(x),

NT 
k=1 t=1 

where Δk,t is the PE for individual k at time t, and M is the distribution of x in the pop­
ulation of interest, which we assume is stationary across k and t. For example, if x1k,t, the 
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first component of xk,t, is continuous, and F is differentiable 

k
/ Δk,t (x, β) = ∂F (x ,t α + ak + b /∂ 1

t) xk,t. 

2. Bias Corrections for Fixed Effects Estimators 

The estimator here could be the “fixed effect” maximum likelihood estimator, 
N T  N T

β̂ = arg max 
NN

f(yk,t | xk,t, α, ak, bt) = arg max 
∑�∑�

ln f(yk,t | xk,t, α, ak, bt). 
β β 

k=1 t=1 k=1 t=1 

For instance, in the binary response model the log likelihood is 

ln f(yk,t | xk,t, α, ak, bt) = yk,t ln F (x/k,tα + ak + bt) + (1 − yk,t) ln{1 − F (xk
/
,tα + ak + bt)}. 

The product form of the likelihood arises from the Markovian assumption across t under­
lying the dynamic model, and it also reflects the independence across observational units 
indexed by k conditional on It. 

This estimator is a GMM estimator with the score functions: 
∂ 

gk,t(Zk,t, β) = ln f(yk,t | wk,t, α, ai, b ). 
∂β t

Here Zk,t = (yk,t, x
/
k,t)

/, and the double index (k, t) corresponds to an observational unit i,
where the total number of units is 

n = NT. 

We assume that the scores evaluated at the true value of the parameter 

gi(Zi, β0) = gk,t(Zk,t, β0) 

are independent across i, but they are not identically distributed because they depend on 
the unobserved effects. 

A fixed effects estimator of the APE can be constructed using the plug-in principle. For 
example, if M is the distribution of x in the entire panel, 

 
N

∑N T
1ˆ ˆθ = Δk,t(xk,t, β).
T 
�
k=1 

∑�
t=1 

This estimator is also a GMM estimator with the score functions: 
θ − Δi(Zi  , β)g̃i(Zi, δ) =

 
, δ := ( β/)/,  θ, Δi(Zi, β) = Δ ,t(xk,t, β). gi(Zi, β)

k
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From the previous lecture, we expect that in this case the “fixed effect” estimators to 
have large bias, since 

p2 (N  + T )2
= O  0. 

n NT
 →

Thus we should perform bias-correction

 (
 either anal

 )
ytically or via sample splitting. With 

the bias correction, the condition could be made as weak as 
3/2 p

 
(N + T )3/2

= O	

 
→ 0, 

n NT 

which seems plausible in many example. Of course, the only way to check if this condition 
makes sense in a particular example is through Monte-Carlo. For a concrete example of 
how to do this, see Section 3. 

[4] shows that the first order bias of α̂ relative to α0 has the form  
D B  

+ ,
N T 

and provides analytical expressions for D and  and estimators B̂ and ˆB D in several leading 
cases. 

The analytically bias-corrected estimator then takes the form  

B̂ D̂ 
α̌ = α̂ − 

T 
− ,

N 
and obeys 

a
α̌ ∼ N(α0, V11/n), 

where ˆV11 is the block of the GMM asymptotic variance of θ corresponding to the main 
parameter component. 

The jackknife bias corrected estimator based on sample splitting takes the form: 
α̌ = α̂ − (α̂N,T/2 − α̂) − (α̂N/2,T − α̂), 

where 

•	 ᾱ N,T/2 is the average of the two fixed effects estimators computed over the sub-
panels resulting from partitioning the original panel in two halves along the 
time dimension; 

•	 ᾱ N/2,T is the average of the two fixed effects estimators computed over the sub-
panels resulting from partitioning the original panel in two halves randomly 
selected along the cross section dimension. Here we can average over many 
partitions to reduce arbitrariness in the choice of the sample splitting. 
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The correction works because the first order biases of α̂N,T/2 − α̂ and α̂N/2,T − α̂ are, 
respectively, 

B B B D D D − = and − = ,
T/2 T T N/2 N N 

which is what we need to bias correction. This estimator has the same properties as 
the analytically bias-corrected estimator under the assumptions imposed, i.e. 

a
α̌ ∼ N(α0, V11/n). 

The jackknife correction is more robust to misspecification of the model than the ana­
lytical correction, but is less robust to violations of stationarity. 

Similar analytical and jackknife bias corrections can be constructed for the fixed effects 
estimator of the APE θ̂, see [4]. 1 

3. Female Labor Force Participation 

We illustrate the bias corrections with an application to the effect of fertility on female 
labor force participation (LFP) from [3].2 The relationship between fertility and female 
labor force participation has been of longstanding interest in labor economics and demog­
raphy. Research on the causal effect of fertility on labor force participation is complicated 
because both variables are jointly determined. Here, we adopt an empirical strategy that 
aims at solving this endogeneity problem by controlling for unobserved individual and 
time effects using panel data. The data comes from waves 13 to 22 of the Panel Study of 
Income Dynamics (PSID) and contains information for the ten calendar years 1979-1988. 
Only women aged 18-60 in 1985 who were continuously married with husbands in the 
labor force in each of the sample periods are included in the sample. The sample consists 
of 1,461 women, 664 of whom changed labor force participation status during the sample 
period. The first year of the sample is excluded for use as initial condition.3 

We estimate the probit binary response model (1.2), where F is the normal cdf, yk,t is a 
LFP indicator for women k at time time; and xk,t = (yk,t −1, wk,t) includes the LFP indicator 
of the previous period yk,t −1, three fertility variables (the numbers of children aged 0-2, 
3-5, and 6-17), the logarithm of the husband’s earnings in 1995 thousands of dollars, and 
a quadratic function of age in years divided by 10. Descriptive statistics for the sample are 
given in Table 1. Roughly 72% of the women in the sample participated in the labor force 

1The Stata commands probitfe and logitfe [2] implement the analytical and jackknife bias corrections 
for probit and logit models.

2See also [5] and [1].
3The code and data are available at http://sites.bu.edu/ivanf/research/. 

http://sites.bu.edu/ivanf/research/
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at some period. The average numbers of children per woman were .2, .3, and 1.1 for the 
three categories 0-2 year-old, 3-5 year-old, and 6-17 year-old, respectively. 

Table 1. Descriptive Statistics 

Variable Mean Std. Dev. 
lfp 0.724 0.447 
laglfp 0.721 0.449 
kids0 2 0.227 0.466 
kids3 5 0.288 0.513 
kids6 17 1.05 1.095 
log husband income ($1995/1000) 10.431 0.690 
age (years/10) 3.73 0.922 

n=NT 13149 
Source: PSID 1979-1988 

Table 2 reports uncorrected and bias corrected fixed effects estimates of the target pa­
rameter α. The results show that most of the uncorrected estimates are more than one 
standard error away from their bias-corrected counterparts. We report the same standard 
errors for all the estimators because the standard errors constructed from the uncorrected 
fixed effects estimators are consistent for V11/n under the asymptotic approximation that 
we consider where N → ∞ and T → ∞

t
. We verify if these standard errors approximate 

well the variability of the estimators with our sample size in a Monte Carlo example be­
low. Table 3 reports the results for the APEs of the lagged LFP and fertility variables. Here, 
we only find significant differences between the uncorrected and bias corrected estimates 
of the lagged LFP, where the APE almost doubles. After correcting the bias, we estimate 
about 20% positive state dependence in the participation decision. Each child aged 0-2 
and 3-5 reduces the probability of participation by 7-9 percent and 3-5 percent, respec­
tively, while an additional child aged more than 6 years does not have a significant effect 
on the probability of participation (at the 5 percent level using the analytically corrected 
estimator). 

To assess the properties of the estimators in our sample size, we conduct a Monte Carlo 
experiment calibrated to the empirical application. In particular, we draw 500 panels of 
size N = 664 and T = 9, with wk,t fixed to the values in the original data, and the values 
of yk,t generated sequentially as 

  ˆ  yk
∗
,t = 1(α̂/xk

∗
,t + âi + βt ≥ εk

∗
,t), k = 1, . . . , N, t = 1, . . . , T, 
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Table 2. Probit Model: Parameters 

Variable Fixed effects Analytical BC Jackknife BC (Std. Err.) 
lagged lfp 0.757 1.082 1.261 (0.043) 
kids0 2 -0.553 -0.445 -0.605 (0.058) 
kids3 5 -0.290 -0.201 -0.346 (0.053) 
kids6 17 -0.074 -0.052 -0.129 (0.043) 
log husband income -0.252 -0.206 -0.329 (0.055) 
age 2.333 1.854 1.828 (0.627) 
age2 -0.244 -0.186 -0.188 (0.052) 
Analytical uses 2 lags to e stimate spectral expectations.  
Split-Jackknife averages over 20 random partitions of the cross sectional dimension  

Table 3. Probit Model: APEs 

Variable Fixed effects Analytical BC Jackknife BC (Std. Err.) 
lagged lfp 0.107 0.207 0.190 (0.007) 
kids0 2 -0.068 -0.072 -0.085 (0.032) 
kids3 5 -0.035 -0.033 -0.047 (0.017) 
kids6 17 -0.009 -0.009 -0.015 (0.007) 
Analytical uses 2 lags to estimate spectral expectations.  
Split-Jackknife averages over 20 random partitions of the cross sectional dimension  

where ∗ ∗  xk,t = (yk,t 1, wk,t), yk∗,0 = y −  k,0, the initial values in the data, and ε∗k,t are indepen­
dent draws from the standard normal distribution. The parameters ˆ(α̂, âi, bt ) are calibrated 
to their uncorrected fixed effects estimates.4 

Table 4 reports biases, standard deviations, root mean square errors, ratios of standard 
errors to standard deviations, and empirical coverage probabilities of confidence intervals 
with nominal level of 95% for the uncorrected and bias corrected estimators of the target 
parameter. To speed up computation, we use only one cross sectional partition in the jack­
knife following the order of the individuals in the original data. All the results, except for 
the coverage probabilities, are in percentage of the true value of the parameter. We find 
that the bias corrections drastically reduce bias and rmse, and have coverage probabilities 
close to their nominal level. The standard errors provide a good approximation to the vari­
ability of the analytical corrections, but they underestimate the variability of the jackknife 
correction because this correction increases finite-sample sample standard deviation. We 
can use the results of this table to correct the coverage probabilities of the confidence in­
tervals in the empirical application. For example, the corrected coverage probability of the 

4We do not need to redraw the women that do not change LFP status during the sample period because 
their values of yk,t can be perfectly predicted by setting âi arbitrarily large or small. These observations are 
not informative about the target parameter α. 
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confidence interval for the state dependence based on jackknife, 1.261 ± 1.96 × 0.043, is 
81%, instead of 95%. 

Table 4. Calibrated Monte Carlo, N = 664, T = 9 

Bias Std. Dev. RMSE SE/SD p;.95 
Coefficient of laglfp 

FE-Probit -53.56 6.06 53.90 1.01 0.00 
Analytical -10.28 6.03 11.92 1.01 0.63 
Jackknife -5.05 7.56 9.09 0.81 0.81 

Coefficient of Kids0-2 
FE-Probit 34.34 12.67 36.60 0.91 0.17 

Analytical 6.41 10.64 12.42 1.09 0.95 
Jackknife 7.30 16.95 18.44 0.68 0.78 

Coefficient of Kids3-5 
FE-Probit 49.73 23.27 54.90 0.87 0.34 

Analytical 11.77 19.36 22.64 1.04 0.92 
Jackknife 22.13 30.97 38.04 0.65 0.70 

Coefficient of Kids6-17 
FE-Probit 58.10 75.73 95.39 0.83 0.81 

Analytical 17.14 62.88 65.12 1.00 0.94 
Jackknife 34.00 97.91 103.55 0.64 0.75 

Coefficient of log of husband income 
FE-Probit 26.16 28.74 38.84 0.85 0.79 

Analytical 5.47 24.97 25.54 0.98 0.93 
Jackknife 4.78 30.60 30.95 0.80 0.87 

Coefficient of age 
FE-Probit 34.89 34.69 49.18 0.84 0.74 

Analytical 8.44 29.43 30.58 0.99 0.93 
Jackknife 3.89 38.86 39.02 0.75 0.87 

Coefficient of age squared 
FE-Probit 36.06 27.67 45.44 0.84 0.64 

Analytical 8.31 22.61 24.07 1.03 0.96 
Jackknife 3.73 35.99 36.15 0.64 0.79 

Notes: 500 replication of probit model calibrated to PSID. 
All the entries are in percent of the true parameter value. 
Analytical uses 2 lags to estimate spectral expectations. 
Jackknife uses 1 partition of the cross sectional dimension. 
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