
Lecture 2

Limit theorems

1 Useful Inequalities 

Theorem 1. (Markov inequality) Let X be any nonnegative random variable such that E[X] exists. Then 

for any t > 0, we have P {X ≥ t} ≤ E[X]/t. 

Proof. Since X is nonnegative, ∫ ∫ ∞ t ∫ ∞ 

E[X] = xf(x)dx = xf(x)dx + xf(x)dx 
0 0 t ∫ ∞ ∫ ∞ 

≥ xf(x)dx ≥ t f(x)dx = tP {X ≥ t} 
t t 

where f denotes the pdf of X. A similar argument works for other types of random variables (not-continuous) 

as well. 

Theorem 2. (Chebyshev inequality) For any random variable X with mean µ and ˝nite variance and for 

any t > 0, we have P {|X − µ| ≥ t} ≤ V ar(X)/t2 . 

Proof. Note that |X − µ| ≥ t if and only if |X − µ|2 ≥ t2 . Thus, P {|X − µ| ≥ t} = P {|X − µ|2 ≥ t2}. Since 
|X − µ|2 is a nonnegative random variable, P {|X − µ|2 ≥ t2} ≤ E[|X − µ|2]/t2 = V ar(X)/t2 by Markov 

inequality. 

Theorem 3. (Hölder's inequality) If p > 1 and 1/p + 1/q = 1, and if E|X|p < ∞ and E|Y |q < ∞, then 

E|XY | ≤ (E|X|p)1/p(E|Y |q )1/q . 

2 Convergence in probability and Law of Large Numbers 

De˝nition 4. Let X1, ..., Xn, ... be a sequence of random variables. We say that {Xn}∞ converges to X n=1 

in probability if for any ε > 0 P { |Xn − X| > ε} → 0 as n → ∞. In this case we write Xn →p X. 

Theorem 5. If E(Xn − X)2 → 0, then Xn →p X. 

Proof. By Markov inequality, for any ε > 0 

P {|Xn − X| > ε} = P {|Xn − X|2 > ε2} ≤ E[|Xn − X|2]/ε2 → 0 

1



. 

Theorem 6. If {Xi}∞ is a sequence of independent and identically distributed (i.i.d.) random variables i=1 ∑n 
with E[Xi] = µ and V ar(Xi) = σ2 < ∞, then Xn := Xi/n →p µ. i=1 ∑ ∑ n n 
Proof. By linearity of expectation, E[Xn] = E[ Xi/n] = E[Xi]/n = µ. Thus, i=1 i=1 

n n ∑ ∑ 
E[|Xn − µ|2] = V (X) = V ( Xi)/n

2 = V (Xi)/n
2 = σ2/n. 

i=1 i=1 

Thus, E|Xn − µ|2 → 0 as n → ∞. 

Theorem 6 uses very strong i.i.d. assumption, in Econometrics we often consider cases when it is not 

satis˝ed. Limit theorems for dependent random variables are discussed in 14.384 Time Series. It is easy to 

get an extension for independent but non-identically distributed random variables. Assume that {Xi}∞ 
i=1 are ∑ n 1 σ2 independent random variables with E[Xi] = µ but V ar(Xi) = σi 

2 . Show that LLN holds if n2 i=1 i → 0. 

Another version of the law of large numbers is 

Theorem 7. If {Xn}∞ is a sequence of iid random variables with EXn = µ and E|Xn| < ∞, then n=1 

Xn →p µ 

3 Weak convergence and Central Limit Theorem 

De˝nition 8. We say that {Xn}∞ converges to X in distribution or weakly if limn→∞ FXn (x) = FX (x) n=1 

for all x ∈ R where FX (x) is continuous. In this case we write Xn ⇒ X. 

Theorem 9. If Xn →p X, then Xn ⇒ X. 

Proof. Note that Xn ≤ x and X > x + ε implies |Xn − X| > ε. Thus, 

FXn (x) = P {Xn ≤ x} 

= P {Xn ≤ x, X ≤ x + ε} + P {Xn ≤ x, X > x + ε} 

≤ P {X ≤ x + ε} + P {|Xn − X| > ε} 

= FX (x + ε) + P {|Xn − X| > ε}. 

for any x ∈ R and ε > 0. Similarly, 

FX (x − ε) ≤ FXn (x) + P {|Xn − X| > ε}. 

Thus, 

FX (x − ε) − P {|Xn − X| > ε} ≤ FXn (x) ≤ FX (x + ε) + P {|Xn − X| > ε}. 
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Next, if x is a point of continuity of FX , for any δ > 0, there exists ε(δ) > 0 such that 

FX (x + ε(δ)) − δ ≤ FX (x) ≤ FX (x − ε(δ)) + δ. 

Therefore 

FX (x) − δ − P {|Xn − X| > ε(δ)} ≤ FXn (x) ≤ FX (x) + δ + P {|Xn − X| > ε(δ)}. 

Next, since Xn →p X,by de˝nition: 

lim |FXn (x) − FX (x)| ≤ δ 
n 

So, FXn (x) → FX (x) as n → ∞ for any x ∈ R where FX (x) is continuous. 

As an exercise, prove that if c is some constant and Xn ⇒ c, then Xn →p c. 

Theorem 10. ( Central limit theorem) Let {Xi} be a sequence of i.i.d. random variables with mean µ and ∑ √ n 
variance σ2 . Then (Xi − µ)/ n ⇒ N(0, σ2). i=1 ∑ √ n 

In the multivariate case, if V ar(Xi) = E[(Xi − E[Xi])(Xi − E[Xi])
T ] = Σ, then (Xi − µ)/ n ⇒ i=1 

N(0, Σ). 

We often will need to consider non-identically distributed random variables, in such a case we should use 

Linderberg- Feller's CLT: 

Theorem 11. Let {Xi}∞ 
i=1 be a sequence of independent random variables with EXi = µi and V (Xi) = σi 

2 . ∑ ∑ n n 2 Denote c = V ( Xi) = σi 
2 . If for any ε > 0 n i=1 i=1 

n 
1 ∑ ( ) 

lim E (Xi − µi)
2I{|Xi − µi| > εcn} = 0 (1) 

n→∞ c2 
n i=1 

∑ n (Xi−µi) 
then i=1 ⇒ N(0, 1). cn 

Sometimes Linderberg's condition (1) is called �asymptotic negligibility� as in particular it implies that 
σ2 

max1≤i≤n 
i → 0 and guarantees that a personal contribution of any Xi to the variance of the sum is 2 cn 

su°ciently small for large n. The following su°cient condition for (1) is called Lyapunov's: 

n∑ 1 
E|Xi − µi|2+δ lim = 0 for some δ > 0. 

2+δ n→∞ cn i=1 

4 Asymptotic statements derived from basic limit theorems 

Theorem 12. (Slutsky theorem and Continuous mapping theorem) Let X, X1, ..., Xn, ... and Y, Y1, ..., Yn, ... 

be some random variables. Let g be some continuous function. Let c be some constant. Then 

1. If Xn →p X and Yn →p Y , then Xn + Yn →p X + Y and XnYn →p XY . 

2. If Xn ⇒ X and Y →p c, then Xn + Yn ⇒ X + c and XnYn ⇒ cX. 
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3. If Xn →p X, then g(Xn) →p g(X). 

4. If Xn ⇒ X, then g(Xn) ⇒ g(X) 

The ˝rst and second statements are known as the Slutsky theorem. The third and forth statements are 

known as the Continuous mapping theorem. These theorems are widely used in statistics. 

4.1 Symbols op and Op 

First, let us talk about some notation for non-stochastic sequences xn and bn. We would write xn = o(bn) 

when limn→∞ 
x
bn
n = 0. Often it is described as �xn is asymptotically smaller than bn�. We would write 

√ xn xn = O(bn) when supn bn 
< ∞. In general we will use some easy-to-describe sequences as bn, such as n, 

1 or 1. Notice that xn = o(1) means xn → 0 and xn = O(1) means that xn is a bounded sequence. Now let n 

us adopt similar notations for sequences of random variables {Xn}∞ 
n=1: 

De˝nition 13. We say that Xn = op(bn) i˙ 
Xn →p 0. bn { } 

Xn We say that Xn = Op(bn) i˙ for any ε > 0 there exists constant C < ∞ such that P bn 
> C < ε for 

all n. 

Sometimes statement Xn = Op(bn) is described as �sequence 
Xn is stochastically bounded.� Some bn 

example of the use of these symbols are given below: 

• If Xn ⇒ N(0, 1) as n → ∞ then Xn = Op(1); 

• If Xn →p X then Xn = X + op(1); 

1 • Chebyshev's inequality for i.i.d. Xi with ˝nite variance implies Xn = Op( √ ) 
n 

We will often use the following statements : 

• If Xn = Op(n
−δ) for some δ > 0 then Xn = op(1); 

• If Xn = op(bn) then Xn = Op(bn); 

α • If Xn = Op(n
α) and Yn = Op(n

β ), then XnYn = Op(n
α+β ) and Xn + Yn = Op(max{n , nβ }); 

• If Xn = Op(n
α) and Yn = op(nβ ), then XnYn = op(nα+β ); 

• If Xn = Op(n
α) and Yn = op(nα), then Xn + Yn = Op(n

α) 

5 Delta method 
√ 

Theorem 14. Assume that for a sequence of random variables Xn and constants µ and σ we have n(Xn − 
√ 

µ) ⇒ N(0, σ2). If g ′ (µ) ≠ 0, then n(g(Xn) − g(µ)) ⇒ N(0, σ2(g ′ (µ))2). 
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⋆ Proof. By the mean value theorem, for any realization Xn(ω), there is some µ (ω) between µ and Xn(ω) n 

such that 

g(Xn(ω)) − g(µ) = g ′ (µ ∗ )(Xn(ω) − µ). (2) 

√ 
⋆ }∞ Thus, we have de˝ned a new sequence of random variables, {µ n=1. By assumptions we have n(Xn −µ) = n 

→p ⋆ ⋆ Op(1), thus (Xn − µ) = op(1) and Xn µ. Since µ is between µ and Xn, µ →p µ as well. By the n n 
⋆ Continuous mapping theorem, g ′ (µ ) →p g ′ (µ) since g ′ (x) is continuous. Moreover, by the Slutsky theorem n√ 

and by the Central limit theorem, ng ′ (µ ∗)(Xn(ω) − µ) ⇒ g ′ (µ)N(0, σ2). 

Note that this theorem also holds when g ′ (µ) = 0 but in this case the asymptotic distribution will be 0 

(constant), i.e. degenerate. I recommend that you remember the argument used in this theorem as it is very 

typical in statistics and econometrics. 

The Delta method has a multidimensional extension. Let X1, ..., Xn, ... be a sequence of iid k × 1 random 

vectors with mean µ and covariance matrix Σ. Then, by the multidimensional Central limit theorem, 
√ 
n(Xn − µ) ⇒ N(0, Σ). Let g : Rk → R be a twice continuously di˙erentiable function. Let τ 2 = 

(∂g(µ)/∂µ)T Σ(∂g(µ)/∂µ). Here ∂g(µ)/∂µ is a k × 1 vector with i-th component equals ∂g(µ)/∂µi. Then 
√ 
n(g(Xn) − g(µ)) ⇒ N(0, τ2). 

5.1 Example 

Let X1, ..., Xn, ... be a sequence of iid random variables with mean µ and variance σ2 . What is the limiting 
2 distribution of (Xn)

2? Let g(x) = x . Then g ′ (µ) = 2µ. Thus, by the Delta method, 
√ 
n((Xn)

2 − µ2) ⇒ 

N(0, 4µ2σ2). Note that if µ = 0, then the limit distribution is degenerate. 
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