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Midterm 

• This is a closed book exam, but two 81
2 
00 × 1100 sheets of notes (4 sides total) are

allowed.

• Calculators are not allowed.

• There are 3 problems, each carrying 10pts, on the exam.

• The problems are not necessarily in order of difficulty.

• Record all your solutions in the answer booklet provided. NOTE: Only the
answer booklet is to be handed in—no additional pages will be con-
sidered in the grading. You may want to first work things through on the
scratch paper provided and then neatly transfer to the answer sheet the work
you would like us to look at. Let us know if you need additional scratch paper.

• A correct answer does not guarantee full credit, and a wrong answer does not
guarantee loss of credit. You should clearly but concisely indicate your reasoning
and show all relevant work. Your grade on each problem will be based on
our best assessment of your level of understanding as reflected by what you have
written in the answer booklet.

• Please be neat—we can’t grade what we can’t decipher!
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Clustering 

Consider the Erdos-Renyi random graph G1(n, p) with mean degree a. 

(a) (2pt) Show that in the limit of large n, the expected number of triangles in the 
network is a constant. Call Δi,j,k as the indicator random variable that 
denotes a triangle between i, j, k. Then � �X n 

E[ Δi,j,k] = P (Δi,j,k = 1) 
3 

i<j<k � � 
n 

= lim p 3 

n→∞ 3 

= a 3/6 

(b) (2pt) Calculate the clustering coefficient C in the limit of large n. 
Note: The clustering coefficient is defined as three times the number of triangles 
divided by the number of connected triplets. A “connected triplet” means three 
vertices uvw with edges (u, v) and (v, w). The edge (u, w) can be present or 
not. 

Call Γi,j,k as the indicator random variable that denotes a triple be-
tween i, j, k. � �� �X n 3 

E[ Γi,j,k] = p 2 

3 2 
i<j<k 

Clustering Coefficient = p 

limn→∞ p = 0. 

(c) (2pt) Calculate the clustering coefficient C for the Erdos-Renyi random graph 
G2(n, p) with p(n) = a log(n)/n. Compare your answer with part (b) in the 
limit of large n. 

As shown before, it is just p, and still 0. But since p is larger in the 
latter case, there is a higher chance that a triple is actually a triangle. 

(d) (2pt) Compare the ratio of the diameters of G1 and G2 in the limit of large n. 

For the value of p in G1 the graph is almost surely disconnected. As a 
result it has infinite diameter. On the other hand, G2 has a diameter 
that is Ω(log(n)) (and is almost surely connected). Therefore, the ratio 
G2/G1 = 0. 
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(e) (2pt) Now, consider a different construction for a random graph model. We 
take n vertices and go through each distinct trio of three vertices and with 

a 
independent probability p = connect the trio using three edges 

(n − 1)(n − 2) 
to form a triangle. Compute the mean vertex degree and clustering coefficient 
for this network model. 

Pick an arbitrary vertex i, let Δij be the indicator random variable 
denoting a link between i, j. Then 

E[Δij ] = 1 − (1 − p)n−2 

(−p(n−2))= 1 − e
(−a/(n−1))= 1 − e

= a/(n − 1) 

Then the average degree is E[Δij ](n − 1) = a. Observe that in this case 
the number of triangles grow linearly as the number of nodes � � 

n ∼Number of Triangle = p = na/6 
3 

Also, the number of triples of uvw occurs when either uvw is a triangle 
or there are triangles uvj and vwk and no triangle uvw where j, k =6
u, v, w. Call the event of no triangle in uvw but there exists a triple 
between them as Γ(uvw) 

P(Γ(uvw)) = 3(1 − (1 − p)n−3)2(1 − p) 
∼= 3a 2/n2 

The ratio is roughly 3/(3a + 1) and points have been awarded to show 
that the clustering coefficient is a constant (does not decay to 0 as 
n →∞). 
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2. Centrality in Infinite Graphs. 

In this problem, you will demonstrate an example that shows that eigenvector cen-
trality can be very sensitive to minimal changes in a network. The problem is broken 
into different components that finally lead to the conclusion. 

Part I 

First, consider the infinite ring network as in Figure 1. 

Figure 1: 

Assume that xi is the eigenvector centrality measure of node i. 

(a) (1pt) Show that the xi’s are computed by finding the largest λ for which there 
exists a set of xi for i = 0, 1, 2, . . . such that: 

λxi = xi−1 + xi+1, ∀i = 1, 2, . . . 

Note that we can always normalize the eigenvector centrality by dividing xi by 
x0 for all i, so that x0 = 1. 

This follows by representing the ring network as Ax = λx where λ is 
the largest eigenvalue and A is the adjacency matrix. 

(b) (2pt) Show that all the nodes have equal ranking. (Hint: Show that the is 
xi = 1 for all i. This should be a straightforward conclusion and can be proved 
by inspection.). 

One can argue by symmetry or show that λ = 2. If λ = 2 all xi = 1 
is a solution and hence the eigenvector. λ cannot be larger than 2. If 
so, and xt was the largest then 

λxt = xt−1 + xt+1 ≤ 2xt 

λ ≤ 2 indeed. 
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Part II 

Next, as shown in Figure 2, we add an edge between two nodes so that the infinite 
ring is divided into two symmetric halves. We will examine the eigenvector centrality 
of this new network. By symmetry, we only need to find the eigenvector centrality 

Figure 2: 

measures indexed by x0, x1, x2, . . . . As before, we always normalize it so that x0 = 1. 

(c) (1pt) Write down the system of equations which characterize the eigenvalue 
centrality. 

λx0 = 2x1 + x0 

λxt = xt−1 + xt+1 t > 0 

(d) (2pt) Show that the eigenvector centrality must satisfy: 

x0 ≥ x1 ≥ x2 ≥ · · · ≥ 0 

(Hint: start with an initial guess xi = 1 for all i, and try to iteratively compute 
the eigenvector. You can prove the inequalities by induction.) Take initial 
guess as xi

t = 1, where 

λxt+1 t t 
i = xi−1 + xi+1 

Clearly for t = 0 this is true (after many iterations this will converge 
to the true centrality). Assume this for t = k. Now observe for 

λxk+1 − λxk+1 k k k k = x − x + x − xi i+1 i−1 i i+1 i+2 

≥ 0 

The last inequality follows from inductive hypothesis. 
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(e) (1pt) Show that the largest eigenvalue λ must satisfy: 

2 ≤ λ ≤ 3 

(Hint: observe the system of equations you wrote down for (c).) λ ≥ 2 
because if we sum up the equation in (c) we get 

n nX X 
λ( xi) = x1 + 2( xi) 

i=0 i=0 

Since x0 is the largest, we also have that 

λx0 = 2x1 + x0 ≤ 3x0 

(f) (3pt) We have shown in Part (e) that xn is positive and decreasing in n. Please 
prove that limn→∞ xn = 0. 
(Hint: consider writing the system of equations in Q2 into the form of a linear 
dynamical system with state y[n] given by: � � 

y[n] = 
xn+1 , 
xn 

write down the recursive equation y[n + 1] = Ay[n] that describes the evolu-
tion of the linear dynamics, and think about the equilibrium.) Now you have 
demonstrated that by adding a single edge one can change the relative centrality 
measure 

x
x
n 

0 drastically. 

Observe that � � 
λ −1 

y[n + 1] = y[n]
1 0 

for all n ≥ 1. Then since xn ≤ xn−1 we only need to show that there is 
an eigenvalue of A that is < 1. As it turns out that eigenvalue is 

√ 
λ − λ2 − 4 

λA = 
2 

It can be shown that λA < 1 whenever λ > 2. This implies that xn → 0. 
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3. Synchronization. 

An oscillator is a simple dynamical system that can be modeled by a first order 
differential equation. A network of n oscillators can be modeled by a system of 
differential equations of the form: Xdθi 

= ω + Aij g(θi − θj ), i = 1, . . . , n 
dt 

i 

where θi represents the phase angle and is the state of the oscillator on vertex i, ω is 
a constant, and the function g(x) has g(0) = 0 and respects the rotational symmetry 
of the phases, meaning that g(x + 2π) = g(x) for all x. 

(a) (2pt) Characterize all solutions of the form θi(t) = ait+bi to the set of dynamical 
equations, i.e., find ai, bi, i = 1, . . . , n. 

ai = ω, bi = b + 2kiπ 

(b) (3pt) Consider a small perturbation away from the state θi = ωt + �i and show 
that the vector � = (�1, �2, . . . , ) satisfies 

d� 0 
= g (0)L� 

dt 

Your solution should specify L in terms of [Aij ], the adjacency matrix of an 
undirected graph. (Hint: Using the Taylor series approximation of g(·) around 

0 00 
x0, i.e., g(x) = g(x0) + (x − x0)g (x0) + (x−

2 
x0)2 

g (x0) + . . .. maybe helpful) 

Substitute θi = ωt + �i. Then the Taylor approximation around 0 can 
be written as 

Xd�i 
= g 

0 
(0)Aij (�i − �j )

dt 
j X 

= g 
0 
(0)di�i − Aij �j 

j 

Now stacking the �i we get 

d� 0 
= g (0)(D − A)� 

dt 

(D − A) = L. 

L is also called the graph Laplacian. We will prove that L has only non–negative 
eigenvalues. 
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(c) (2pt) Show that L = MT M where M is the incidence matrix, i.e., the rows 
correspond to the edges and columns correspond to the vertices. Therefore, for 
every edge e = (i, j) between i, j where i < j we have that 

Mev = −1 if v = i 

Mev = 1 if v = j 

Mev = 0 otherwise 

The proof is here. 

(d) (2pt) Argue that L is a symmetric matrix and that for any vector x we have that 
xT Lx ≥ 0. Conclude from this that all the eigenvalues of L are non–negative. 
(Hint: Use the fact that all eigenvalues, λ, of a symmetric matrix, P , are of the 
form 

vT Pv 
= λ 

Tv v 
where v is the corresponding eigenvector.) 

(e) (1pt) For what values of g 
0 
(0) is the system stable to small perturbations around 

the origin? 
(Hint: You can use a Lyapunov argument with quadratic Lyapunov function 
V (x) = xT x to examine stability of the linearized system in part (b)). 

g 
0 
(0) < 0 ensures system is stable. 
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