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What is Game Theory?

Game Theory is the formal study of strategic interaction.

In a strategic setting the actions of several agents are interdependent.
Each agent’s outcome depends not only on his actions, but also on the
actions of other agents. How to predict opponents’ play and respond
optimally?

Everything is a game. . .
I poker, chess, soccer, driving, dating, stock market
I advertising, setting prices, entering new markets, building a reputation
I bargaining, partnerships, job market search and screening
I designing contracts, auctions, insurance, environmental regulations
I international relations, trade agreements, electoral campaigns

Most modern economic research includes game theoretical elements.
Eleven game theorists have won the economics Nobel Prize so far.
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Brief History
I Cournot (1838): quantity setting duopoly
I Zermelo (1913): backward induction
I von Neumann (1928), Borel (1938), von Neumann and Morgenstern

(1944): zero-sum games
I Flood and Dresher (1950): experiments
I Nash (1950): equilibrium
I Selten (1965): dynamic games
I Harsanyi (1967): incomplete information
I Akerlof (1970), Spence (1973): first applications
I 1980s boom, continuing nowadays: repeated games, bargaining,

reputation, equilibrium refinements, industrial organization, contract
theory, mechanism/market design

I 1990s: parallel development of behavioral economics
I more recently: applications to computer science, political science,

psychology, evolutionary biology
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Key Elements of a Game

I Players: Who is interacting?
I Strategies: What are the options of each player? In what order do

players act?
I Payoffs: How do strategies translate into outcomes? What are

players’ preferences over possible outcomes?
I Information/Beliefs: What do players know/believe about the

situation and about one another? What actions do they observe
before making decisions?

I Rationality: How do players think?
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Normal-Form Games

A normal (or strategic) form game is a triplet (N,S, u) with the following
properties:
I N = {1, 2, . . . , n}: finite set of players
I Si 3 si : set of pure strategies of player i
I S = S1 × · · · × Sn 3 s = (s1, . . . , sn): set of pure strategy profiles∏
I S−i = j,i Sj 3 s−i : pure strategy profiles of i’s opponents
I ui : S → R: payoff function of player i; u = (u1, . . . , un).

Outcomes are interdependent. Player i ∈ N receives payoff ui(s1, . . . , sn)
when s = (s1, . . . , sn) ∈ S is played.

The structure of the game is common knoweldge: all players know
(N,S, u), and know that their opponents know it, and know that their
opponents know that everyone knows, and so on.

The game is finite if S is finite.
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Rock-Paper-Scissors

R P S
R 0, 0 −1, 1 1,−1
P 1,−1 0, 0 −1, 1
S −1, 1 1,−1 0, 0
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Mixed and Correlated Strategies

I ∆(X): set of probability measures (or distributions) over the
measurable space X (usually, X is either finite or a subset of a
Euclidean space)

I ∆(Si) 3 σi : mixed strategies of player i
I σ ∈ ∆(S1) × · · · ×∆(Sn): mixed strategy profile, specifies a mixed

strategy for each player
I ∆(S) 3 σ: correlated strategy profiles
I σ−i ∈ ∆(S−i): correlated belief for player i∏
I j,i ∆(Sj): set of independent beliefs for i

Player i has von Neumann-Morgenstern preferences—expected
utility—over ∆(S), i.e., ui extends to ∆(S) as follows:∑

ui(σ) = σ(s)ui(s).
s∈S
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Dominated Strategies

Are there obvious predictions about how a game should be played?
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Advertising War: Coke vs. Pepsi

I Without any advertising, each company earns $5b/year from Cola
consumers.

I Each company can choose to spend $2b/year on advertising.
I Advertising does not increase total sales for Cola, but if one company

advertises while the other does not, it captures $3b from the
competitor.

Pepsi
No Ad Ad

Coke No Ad $5b , $5b $2b , $6b
Ad $6b , $2b $3b , $3b∗

I What will the Cola companies do?
I Is there a better feasible outcome?
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Prisoners’ Dilemma (PD)
Flood and Dresher (1950): RAND corporation’s investigations into game
theory for possible applications to global nuclear strategy
I Two persons are arrested for a crime.
I There is not enough evidence to convict either.
I Different cells, no communication.

I If a suspect testifies against the other (“Defect”) and the other does not
(“Cooperate”), the former is released and the latter gets a harsh
punishment.

I If both prisoners testify, they share the punishment.
I If neither testifies, both serve time for a smaller offense.

C D
C 2, 2 0, 3
D 3, 0 1, 1∗

I Each prisoner is better off defecting regardless of what the other
does. We say D strictly dominates C for each prisoner.

I The resulting outcome is (D,D), which is worse than (C ,C).
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Modified Prisoners’ Dilemma

Consider the game obtained from the prisoners’ dilemma by changing
player 1’s payoff for (C ,D) from 0 to 2.

C D
C 2, 2 2, 3∗

D 3, 0 1, 1

I No matter what player 1 does, player 2 still prefers D to C.
I If player 1 knows that 2 never plays C, then he prefers C to D.
I Unlike in the prisoners’ dilemma example, we use an additional

assumption to reach our prediction in this case: player 1 needs to
deduce that player 2 never plays a dominated strategy.
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Strictly Dominated Strategies

Definition 1
A strategy si ∈ Si is strictly (s.) dominated by σi ∈ ∆(Si) if

ui(σi , s−i) > ui(si , s−i),∀s−i ∈ S−i .
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Pure Strategies May Be Dominated by Mixed Strategies

L R
T 3, x 0, x
M 0, x 3, x
B 1, x 1, x

Figure: B is s. dominated by 1/2T + 1/2M.
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The Beauty Contest

I Players: everyone in the class
I Strategy space: any number in {1, 2, . . . , 100}
I The person whose number is closest to 2/3 of the class average wins

the game.
I Payoffs: one randomly selected winner receives $1.

Why is this game called a beauty contest?
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Keynesian Beauty Contest

Keynes described the action of rational actors in a market using an
analogy based on a newspaper contest. Entrants are asked to choose a
set of 6 faces from photographs that they find “most beautiful.” Those who
picked the most popular face are eligible for a prize.

A naive strategy would be to choose the 6 faces that, in the opinion of the
entrant, are most beautiful. A more sophisticated contest entrant, wishing
to maximize the chances of winning against naive opponents, would guess
which faces the majority finds attractive, and then make a selection based
on this inference.

This can be carried one step further to account for the fact that other
entrants would each have their own opinions of what public perceptions of
beauty are. What does everyone believe about what everyone else
believes about whom others find attractive?
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The Beauty Contest and the Stock Market

It is not a case of choosing those faces that, to the best of one’s
judgment, are really the prettiest, nor even those that average
opinion genuinely thinks the prettiest. We have reached the third
degree where we devote our intelligences to anticipating what
average opinion expects the average opinion to be. And there
are some, I believe, who practice the fourth, fifth and higher
degrees. (John Maynard Keynes, General Theory of
Employment, Interest and Money, 1936)

Keynes suggested that similar behavior is observed in the stock market.
Shares are not priced based on what people think their fundamental value
is, but rather on what they think everyone else thinks the value is and what
they think about these beliefs, and so on.
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Iterated Deletion of Strictly Dominated Strategies

We can iteratively eliminate dominated strategies, under the assumption
that “I know that you know that other players know. . . that everyone knows
the payoffs and that no one would ever use a dominated strategy.”

Definition 2
For all i ∈ N, set S0

i = Si and define Sk
i recursively by

Sk
i = {si ∈ Sk−1

i |@σi ∈ ∆(Sk−1
i ), ui(σi , s−i) > ui(si , s−i),∀s−i ∈ Sk−1

−i }.

The set of pure strategies of player i that survive iterated deletion of s.
dominated strategies is S∞i = ∩k≥0Sk

i . The set of surviving mixed
strategies is

{σi ∈ ∆(S∞i )|@σ′i ∈ ∆(S∞i ), ui(σ
′
i , s−i) > ui(σi , s−i),∀s−i ∈ S∞

−i }.
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Remarks

In a finite game, the elimination procedure ends in a finite number of steps,
so S∞ is simply the set of strategies left at the final stage.

In an infinite game, if S is a compact metric space and u is continuous,
then one can use Cantor’s theorem (a decreasing nested sequence of
non-empty compact sets has nonempty intersection) to show that S∞ , ∅.

Definition assumes that at each iteration all dominated strategies of every
player are deleted simultaneously. In a finite game, the limit set S∞ does
not depend on the particular order in which deletion proceeds.

Outcome does not change if we eliminate s. dominated mixed strategies at
every step. A strategy dominated against all pure strategies of the
opponents iff it is dominated against all their mixed strategies. Eliminating
mixed strategies for player i at any stage does not affect the set of s.
dominated pure strategies for any j , i at the next stage.
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Detour on Common Knowledge

I Is common knowledge a sensible assumption? What does the
definition of S100

i entail?
I Higher order beliefs, common knowledge of rationality. . .
I Why did the strategy of choosing 1 not win in the beauty contest?
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The Story of the Unfaithful Wives

I A village with 100 married couples and a high priest.
I The men had to pass a logic exam before being allowed to marry.
I It is common knowledge that the high priest is truthful.
I The men would gossip about adulterous relationships and each

knows which of the other wives are unfaithful.
I No one would ever inform a husband about his cheating wife.
I The high priest knows that some wives are unfaithful and decides that

such immorality should no longer be tolerated.
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Continued Story

I The priest convenes all the men at the temple and publicly announces
that the integrity of the village has been compromised—there is at
least one cheating wife.

I He also points out that even though no one knows whether his wife is
faithful, each man has heard about the other unfaithful wives.

I He orders that every man certain of his wife’s infidelity should shoot
her at midnight.

I 39 silent nights went by and. . . on the 40th shots were heard.

How many wives were shot? Were all the unfaithful wives murdered? How
did men learn of the infidelity of their wives after 39 nights in which nothing
happened?
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Rationalizability

I Solution concept introduced independently by Bernheim (1984) and
Pearce (1984).

I Like iterated dominance, rationalizability derives restrictions on play
from common knowledge of payoffs and the fact that players are
“reasonable.”

I Dominance: unreasonable to use a strategy that performs worse than
another (fixed) one in every scenario.

I Rationalizability: irrational for a player to choose a strategy that is not
a best response to some beliefs about opponents’ strategies.
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What is a “Belief”?

I Bernheim & Pearce: every player i’s beliefs σ−i about the play of j , i∏
must be independent, i.e., σ−i ∈ j,i ∆(Sj).

I Alternatively, allow player i to believe that the actions of opponents
are correlated, i.e., any σ−i ∈ ∆(S−i) is a possibility.

I The two definitions have different implications for n ≥ 3.

Focus on case with correlated beliefs. Such beliefs represent a player’s
uncertainty about his opponents’ actions, not necessarily his theory about
their deliberate randomization and coordination.

Player i may place equal probability on two scenarios: either both j and k
pick action A or they both play B. If i is not sure which theory is true, then
his beliefs are correlated even though he knows that j and k are acting
independently.
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Best Responses

Definition 3
A strategy σi ∈ Si is a best response to a belief σ−i ∈ ∆(S−i) if

ui(σi , σ−i) ≥ ui(si , σ−i),∀si ∈ Si .
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Rationalizabile Strategies

Common knowledge of payoffs and rationality imposes restrictions on
play. . .

Definition 4
Set S0 = S and let Sk be given recursively by

Sk
i = {si ∈ Sk−1

i |∃σ−i ∈ ∆(Sk−1
−i ), ui(si , σ−i) ≥ ui(s′i , σ−i),∀s′i ∈ Sk−1

i }.

The set of correlated rationalizable strategies for player i is S∞i =
⋂

k≥0 Sk
i .

A mixed strategy σi ∈ ∆(Si) is rationalizable if there is a belief
σ−i ∈ ∆(S∞

−i ) s.t. ui(σi , σ−i) ≥ ui(si , σ−i) for all si ∈ S∞i .

The definition of independent rationalizability replaces ∆(Sk−1
−i ) and

∆(S∞
−i ) with

∏
j,i ∆(Sk−1

j ) and
∏

j,i ∆(S∞j ), resp.
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Rationalizability in Cournot Duopoly

Two firms compete on the market for a divisible homogeneous good.
I Each firm i = 1, 2 has zero marginal cost and simultaneously decides

to produce an amount of output qi ≥ 0.
I The resulting price is p = 1 − q1 − q2.
I Profit of firm i is qi(1 − q1 − q2).
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Rationalizability in Cournot Duopoly
Best response of one firm if the other produces q is
B(q) = max(0, (1 − q)/2) (j = 3 − i); B is decreasing. If q S r then
B(q) T (1 − r)/2.

I Since q 0≥ q := 0, only strategies q q1 0:= B(q0≤ ) = (1 − q )/2 are
best responses, S1 1= [q0, q ]i .

I Then only q ≥ q2 := B(q1) = (1 − q1)/2 survives the second round of
elimination, S2 1= [q2, q ]i . . .

I We obtain a sequence

q0 2 2k 2k+1 1≤ q ≤ . . . ≤ q ≤ . . . ≤ q ≤ . . . ≤ q ,∑
where q2k k l k 2k= / +1 2k− / / − /l= (1 =1 1 4 = 1 4 ) 3 and q (1 q ) 2 s.t.
S2k+1 = [i q2k , q2k+1] and S2k 2k 2k 1= [ , − ] ≥i q q for all k 0.

limk→∞ qk = 1/3, so the only rationalizable strategy for firm i is qi = 1/3
(the Nash equilibrium).

What strategies are rationalizable with more than two firms?
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Never Best Responses
A strategy σi ∈ ∆(Si) is never a best response for player i if it is not a best
response to any correlated belief σ−i ∈ ∆(S−i).

Recall that σi ∈ ∆(Si) is s. dominated if ∃σ′i ∈ ∆(Si) s.t.

ui(σ
′
i , s−i) > ui(σi , s−i),∀s−i ∈ S−i .

Theorem 1
In a finite game, a strategy is never a best response iff it is s. dominated.

Corollary 1
Correlated rationalizability and iterated strict dominance coincide.

If σi is s. dominated by σ′i , then σi is not a best response for any belief
σ−i ∈ ∆(S−i): σ′i yields a higher payoff than σi for player i against any σ−i .

Left to prove that a strategy that is not s. dominated is a best response for
some beliefs.
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Proof
Suppose σ̃i is not s. dominated for player i.
I Define set of “dominated payoffs” for i by

D = {x S∈ R −i |∃σi ∈ ∆(Si), x ≤ ui(σi , ·)}.

D is non-empty, closed, and convex.
I ui(σ̃i , ·) does not belong to the interior of D because it is not s.

dominated by any σi ∈ ∆(Si).
I By the supporting hyperplane theorem, S∃α ∈ R −i \ {0} s.t.

α · ui(σ̃i , ·) ≥ α · x,∀x ∈ D.

In particular, α · ui(σ̃i , ·) ≥ α · ui(σi , ·),∀σi ∈ ∆(Si).
I Since D is not bounded from below, α has non-negative components.
I Normalize α so that its components sum to 1; α interpreted as a belief

in ∆(S−i) with the property that

ui(σ̃i , α) ≥ ui(σi , α),∀σi ∈ ∆(Si).

Thus σ̃i is a best response to belief α.
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Iteration and Best Responses
Theorem 2
For every k ≥ 0, each si ∈ Sk

i is a best response (within Si) to a belief in
∆(Sk−1

−i ).

Proof.
Fix si ∈ Sk

i ; si is a best response within Sk−1
i to some σ−i ∈ ∆(Sk−1

−i ). If si

were not a best response within Si to σ−i , let s′i be a best response.

Since si is a best response within Sk−1
i to σ−i and s′i is a better response

than si to σ−i , we need s′i < Sk−1
i .

Then s′i was deleted at an earlier stage, say s′i ∈ S l−1
i but s′i < S l

i for some
l ≤ k − 1. This contradicts the fact that s′i is a best response in Si ⊇ S l−1

i to
σ−i ∈ ∆(Sk−1

−i ) ⊆ ∆(S l−1
−i ). �

Corollary 2
If the game is finite, then each si ∈ S∞i is a best response (within Si) to a
belief in ∆(S∞

−i ).
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Closed under Rational Behavior
Definition 5
A set Z = Z1 × . . . × Zn with Zi ⊆ Si for i ∈ N is closed under rational
behavior if, for all i, every strategy in Zi is a best response to a belief in
∆(Z−i).

Theorem 3
If the game is finite (or if S is a compact metric space and u is continuous),
then S∞ is the largest set closed under rational behavior.

Proof.
S∞ is closed under rational behavior by Corollary 2. Suppose that there
exists Z1 × . . . × Zn 1 S∞ that is closed under rational behavior.

Consider the smallest k for which there is an i such that Zi * Sk
i . It must

be that k ≥ 1 and Z−i ⊆ Sk−1
−i .

By assumption, every element of Zi is a best response to an element of
∆(Z−i) ⊂ ∆(Sk−1

−i ), contradicting Zi * Sk
i . �
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Epistemic Foundations of Rationalizability

Formalize the idea of common knowledge and show that rationalizability
captures the idea of common knowledge of rationality (and payoffs).

Definition 6 (Information Structure)
An information (or belief) structure is a list (Ω, (Ii)i∈N , (pi)i∈N)

I Ω is a finite state space
I Ii : Ω→ 2Ω is a partition of Ω for each i ∈ N s.t. Ii(ω) is the set of

states that i thinks are possible when the true state is ω;
ω′ ∈ Ii(ω)⇔ ω ∈ Ii(ω′)

I pi,Ii(ω) ∈ ∆(Ii(ω)): i’s belief at ω
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Interpretation

I State ω summarizes all the relevant facts about the world. Only one
of the states is true; all others are hypothetical states needed to
encode players’ beliefs.

I In state ω, player i is informed that the state is in Ii(ω) and gets no
other information.

I Such an information structure arises if each player observes a
state-dependent signal and Ii(ω) is the set of states for which player
i’s signal is identical to the signal at ω.
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Knowledge and Common Knowledge

Definition 7
For any event F ⊆ Ω, player i knows at ω that F obtains if Ii(ω) ⊆ F . The
event that i knows F is

Ki(F) = {ω|Ii(ω) ⊆ F}.

The event that everyone knows F is defined by

K(F) = ∩i∈NKi(F).

Let K0(F) = F and K t+1(F) = K(K t (F)) for t ≥ 0. Set
K∞(F) =

⋂
t≥0 K t (F). K∞(F) is the set of states where F is common

knowledge.
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Public Events

K(K∞(F)) = K∞(F)→ alternative definition of common knowledge

Event F ′ is public if F ′ = ∪ ′ ′
ω′∈F ′ Ii(ω ) for all i. If F is public, then

K(F ′) = F ′, so K∞(F ′) = F ′.

Lemma 1
An event F is common knowledge at ω iff there exists a public event F ′

with ω ∈ F ′ ⊆ F.

If F is common knowledge at ω, there exists a submodel that includes
state ω and respects the information structure where F is true state by
state.
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Strategies

Fix a finite game (N,S, u). To give strategic meaning to information states,
introduce a strategy profile s : Ω→ S.

Definition 8
A strategy profile s : Ω→ S is adapted with respect to (Ω, (Ii)i∈N , (pi)i∈N)
if si(ω) = si(ω

′) whenever Ii(ω) = Ii(ω′).

Players must choose a constant action at all states in each information set
since they cannot distinguish states in the same information set.

Definition 9
An epistemic model (Ω, (Ii)i∈N , (pi)i∈N , s) consists of an information
structure and an adapted strategy profile.
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Common Knowledge of Rationality

Definition 10
For an epistemic model (Ω, (Ii)i∈N , (pi)i∈N , s), player i is rational at ω ∈ Ω if∑

si(ω) ′ ′∈ arg max ui(si , s−j(ω ))pi,Ii(ω)(ω ).
siεSi

ω′∈Ii(ω)

Definition 11
A strategy si ∈ Si consistent with common knowledge of rationality if
there exists a model (Ω, (Ij)j∈N , (pj)j∈N , s) and state ω∗ ∈ Ω with
si(ω

∗) = si at which it is common knowledge that all players are rational.

Equivalently, ∃ (Ω, (Ij)j∈N , (pj)j∈N , s) s.t. sj(ω) is a best response to s−j at
each ω ∈ Ω for every player j ∈ N.
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Result

Theorem 4
For any i ∈ N and si ∈ Si , si is consistent with common knowledge of
rationality iff si ∈ S∞i .

Can extend result to allow for payoff uncertainty (adding the hypothesis
that payoffs are common knowledge at the relevant state).
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Proof
(⇒) Fix si consistent with common knowledge of rationality.
∃ (Ω, (Ij)j∈N , (pj)

∗ ∗
j∈N , s) with ω ∈ Ω s.t. si(ω ) = si and∑

sj(ω) ∈ arg max uj(sj , s ω)(ω′−j(ω
′))p , ),∀j ∈j Ij( N, ω ∈ Ω.

sj∈Sj ω′∈Ij(ω)

Define Zj = s ∗
j(Ω). Note that si = si(ω ) ∈ si(Ω) = Zi . By Theorem 3, to

show that si ∈ S∞i , it suffices to prove that Z is closed under rational
behavior.

∀zj ∈ Zj ,∃ω ∈ Ω s.t. zj = sj(ω). Define µj,ω ∈ ∆(Z−j) by∑
µj,ω(s pj,Ij( )(ω′−j) = ω ).

ω′∈Ij(ω),s−j(ω′)=s−j

Then ∑
zj = sj(ω) ∈ arg max uj(sj , s−j(ω

′))p ( (ω′i,I ω) )
sj∈S

j
j
ω′∈I∑ j(ω)

= arg max µj,ω(s−j)uj(sj , s−j).
sj∈Sj s−j∈Z−j
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Proof
(⇐) Since S∞ is closed under rational behavior, for every si ∈ S∞i , there
exists µi,si ∈ ∆(S∞

−i ) for which si is a best response. Define the model
(S∞, (Ii)i∈N , (pi)i∈N , s) :

Ii(s) = {si} × S∞
−i

pi,s(s′) = µi,si

(
s′
−i

)
s(s) = s

In this model, it is common knowledge that every player is rational:

∀s ∈ S∞, si(s) = si ∈ arg max
s′i ∈Si

∑
s−i∈S∞−i

ui

(
s′i , s−i

)
µi,s

(
s′
−i

)
= arg max

s′i ∈Si

∑
s′∈Ii(s)

ui

(
s′i , s−i

)
pi,s(s′).

For every si ∈ S∞i , there exists s = (si , s−i) ∈ S∞ s.t. si(s) = si , showing
that si is consistent with common knowledge of rationality.
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Nash Equilibrium

Many games are not dominance solvable. Nevertheless, the involved
parties find a solution.

L R
L 1, 1 0, 0
R 0, 0 1, 1

T S
T 3, 2 1, 1
S 0, 0 2, 3

H T
H 1,−1 −1, 1
T −1, 1 1,−1

Figure: Coordination Game, Battle of the Sexes, Matching Pennies

A Nash equilibrium is a strategy profile with the property that no player can
benefit by deviating from his corresponding strategy.

Definition 12 (Nash 1950)
A mixed-strategy profile σ∗ is a Nash equilibrium if for every i ∈ N,

ui(σ
∗
i , σ

∗
−i) ≥ ui(si , σ

∗
−i),∀si ∈ Si .
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Remarks

I The fact that there is no profitable deviation in pure strategies implies
there is no profitable deviation in mixed strategies either.

I If in equilibrium a player uses a mixed strategy that places positive
probability on several pure strategies, he must be indifferent between
all pure strategies in its support.

I Strategies that do not survive iterated strict dominance (or are not
rationalizable) cannot be played with positive probability in a Nash
equilibrium.
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What Are the Assumptions?

I Nash equilibria are “consistent” predictions (or “stable” conventions)
of how the game will be played.

I If all players expect that a specific Nash equilibrium will arise, then no
player has incentives to play differently.

I Each player must have correct conjectures about the strategies of his
opponents and play a best response to his conjecture.

I We interpret mixed strategies as beliefs regarding opponents’ play,
not necessarily as deliberate randomization.

I Assumes knowledge of strategies (beliefs) and rationality.
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Do Soccer Players Flip Coins?

Penalty kicks
I Kicker’s strategy space: {L,M,R}
I Goalie’s strategy space: {L,M,R}
I What are the payoffs?
I What’s the Nash equilibrium?
I Simultaneous move game? (125mph, 0.2 seconds reaction time)
I What do players do in reality?
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Penalty Kicks
Chiappori, Levitt, and Groseclose (2002)
I 459 kicks in French and Italian first leagues
I 162 kickers, 88 goalies
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Tennis Service Game

Player 1 chooses whether to serve to player 2’s forehand, center or
backhand side, and player 2 chooses which side to favor for the return.
Unique mixed strategy equilibrium, which puts positive probability only on
strategies C and B for either player.

F C B
F 0, 5 2, 3 2, 3
C 2, 3 0, 5 3, 2
B 5, 0 3, 2 2, 3

I For player 1, playing C with probability ε and B with probability 1− ε s.
dominates F .

I If player 1 never chooses F , then C s. dominates F for player 2.
I In the remaining 2 × 2 game, there is a unique equilibrium, in which

both players place probability 1/4 on C and 3/4 on B.
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Stag Hunt

Each player can choose to hunt hare by himself or hunt stag with the
other. Stag offers a higher payoff, but only if players team up.

S H
S 9, 9 0, 8
H 8, 0 7, 7

The game has two pure strategy Nash equilibria—(S,S) and (H,H)—and
a mixed strategy Nash equilibrium—(7/8S + 1/8H, 7/8S + 1/8H).

Mihai Manea (MIT) Game Theory February 17, 2016 47 / 69



Which Equilibrium is More Plausible?

I We may expect (S,S) to be played because it is Pareto dominant.
However, if one player expects the other to hunt hare, he is much
better off hunting hare himself; and the potential downside of
choosing stag is bigger than the upside—hare is the safer choice.

I Harsanyi and Selten (1988): H is the risk-dominant action—if each
player expects the other to choose either action with probability 1/2,
then H has a higher expected payoff (7.5) than S (4.5).

I For a player to optimally choose stag, he should expect the other to
play stag with probability ≥ 7/8.

I Coordination problem may persist even if players communicate:
regardless of what i intends to do, he would prefer j to play stag, so
attempts to convince j to play stag are cheap talk.
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Epistemic Foundations

I Aumann and Brandenburger (1995): a framework that can be used to
examine the epistemic foundations of Nash equilibrium.

I The primitive of their model is an interactive belief system in which
there is a possible set of types for each player; each type has
associated to it a payoff for every action profile, a choice of which
action to play, and a belief about the types of the other players.

I In a 2-player game, if the game being played, the rationality of the
players, and their conjectures are all mutually known, then the
conjectures constitute a Nash equilibrium.

I For games with more than 2 players, we need to assume additionally
that players have a common prior and that conjectures are commonly
known. This ensures that any two players have identical and
separable (independent) conjectures about other players, consistent
with a mixed strategy profile.
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Evolutionary Foundations

I Solution concepts motivated by presuming that players make
predictions about their opponents’ play by introspection and
deduction, using knowledge of their opponents’ payoffs, rationality. . .

I Alternatively, assume players extrapolate from past observations of
play in “similar” games and best respond to expectations based on
past observations.

I Cournot (1838) suggested that players take turns setting their outputs
in the duopoly game, best responding to the opponent’s last-period
action.

I Simultaneous action updating, best responding to average play,
populations of players anonymously matched (another way to think
about mixed strategies), etc.

I If the process converges to a particular steady state, then the steady
state is a Nash equilibrium.
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Convergence
How sensitive is the convergence to the initial state? If convergence
obtains for all initial strategy profiles sufficiently close to the steady state,
we say that the steady state is asymptotically stable.
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Shapley (1964) Cycling

L M R
U 0, 0 4, 5 5, 4
M 5, 4 0, 0, 4, 5
D 4, 5 5, 4 0, 0
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Remarks

I Evolutionary processes are myopic and do not offer a compelling
description of behavior.

I Such processes do not provide good predictions for behavior in the
actual repeated game, if players care about play in future periods and
realize that their current actions can affect opponents’ future play.
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Existence of Nash Equilibrium

L R
L 1, 1 0, 0
R 0, 0 1, 1

T F
T 3, 2 1, 1
F 0, 0 2, 3

H T
H 1,−1 −1, 1
T −1, 1 1,−1

Figure: Coordination Game, Battle of the Sexes, Matching Pennies

I The coordination game and the battle of the sexes have multiple
equilibria.

I Matching pennies does not have a pure strategy equilibrium. In the
unique equilibrium, both players mix 50-50.

Theorem 5 (Nash 1950)
Every finite game has an equilibrium (potentially in mixed strategies).
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Nash (1950)

↪→
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Proof

Mihai Manea (MIT) Game Theory

Courtesy of John F. Nash, Jr. "Equilibirum Points in N-Person Games." Proceedings of the
National Academy of Sciences of the United States of America 36 no. 1 (1949): 48-49.

February 17, 2016 56 / 69

http://www.pnas.org/content/36/1/48.full


Kakutani

A long time ago, the Japanese mathematician Kakutani asked
me why so many economists had attended the lecture he had
just given. When I told him that he was famous because of the
Kakutani fixed-point theorem, he replied, ‘What is the Kakutani
fixed-point theorem?’ (Ken Binmore, Playing for Real, 2007)
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Existence of Nash Equilibria

Prove the existence of Nash equilibria in a more general setting.
I Continuity and compactness assumptions are indispensable, usually

needed for the existence of solutions to optimization problems.
I Convexity is usually required for fixed-point theorems.

Need some topology prerequisites. . .
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Correspondences

Topological vector spaces X and Y
I A correspondence F : X ⇒ Y is a set valued function taking elements

x ∈ X into subsets F(x) ⊆ Y .
I G(F) =

{
(x, y) |y ∈ F (x)

}
: graph of F

I x ∈ X is a fixed point of F if x ∈ F(x)

I F is non-empty/closed-valued/convex-valued if F (x) is
non-empty/closed/convex for all x ∈ X .
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Closed Graph

I A correspondence F has closed graph if G (F) is a closed subset of
X × Y .

I If X and Y are first-countable spaces (such as metric spaces), then F
has closed graph iff for any sequence (xm, ym)m≥0 with ym ∈ F (xm)
for all m ≥ 0, which converges to a pair (x, y), we have y ∈ F (x).

I Correspondences with closed graph are closed-valued.
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Upper Hemicontinuity

I A correspondence F is upper hemicontinuous at x ∈ X if for every
open neighborhood VY of F (x), there exists a neighborhood VX of x
such that x′ ∈ VX ⇒ F (x′) ⊂ VY .

I Closed graph and upper hemicontinuity may have different
implications. The constant correspondence F : [0, 1]⇒ [0, 1] defined
by F(x) = (0, 1) is upper hemicontinuous, but does not have a closed
graph.

The two concepts coincide for closed-valued correspondences in most
spaces of interest.

Theorem 6 (Closed Graph Theorem)
A correspondence F : X ⇒ Y with compact Hausdorff range Y is closed iff
it is upper hemicontinuous and closed-valued.
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The Maximum Theorem

Theorem 7 (Berge’s Maximum Theorem)
Suppose that f : X × Y → R is a continuous function, where X and Y are
metric spaces and Y is compact.

1 The function M : X → R, defined by

M (x) = max
y∈Y

f (x, y) ,

is continuous.
2 The correspondence F : X ⇒ Y,

F (x) = arg max
y∈Y

f (x, y)

is nonempty valued and has a closed graph.
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A Fixed-Point Theorem

Theorem 8 (Kakutani’s Fixed-Point Theorem)
Let X be a non-empty, compact, and convex subset of a Euclidean space
and let the correspondence F : X ⇒ X have closed graph and non-empty
convex values. Then the set of fixed points of F is non-empty and
compact.

In game theoretic applications, X is usually the strategy space, assumed
to be compact and convex when we include mixed strategies.

F is typically the best response correspondence, which is non-empty
valued and has a closed graph by the Maximum Theorem.
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Convexity

To ensure that F is convex-valued, assume that payoff functions are
quasi-concave.

Definition 13
If X is a convex subset of a real vector space, then the function f : X → R
is quasi-concave if

f(tx + (1 − t)y) ≥ min(f(x), f(y)),∀t ∈ [0, 1], x, y ∈ X .

Quasi-concavity implies convex upper contour sets and convex arg max.
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Existence of Nash Equilibrium

Theorem 9
Consider a game (N,S, u) such that Si is a convex and compact subset of
a Euclidean space and that ui is continuous in s and quasi-concave in si

for all i ∈ N. Then there exists a pure strategy Nash equilibrium.

The result implies the existence of pure strategy Nash equilibria in
generalizations of the Cournot competition game.

Theorem 9 also implies the existence of mixed strategy Nash equilibria in
finite games.
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Proof

I Let Bi (s−i) := arg maxs′∈Si ui(s′,i s−i) and define F : S ⇒ S,
i ∏

F (s) = (s∗, . . . , s∗ ∗{ n)|s ∈i Bi (s−i) ,∀i ∈ N}1 = Bi (s−i) ,∀s ∈ S.
i∈N

I Since S is compact and the utility functions are continuous, the
Maximum Theorem implies that Bi and F are non-empty valued and
have closed graphs.

I As ui is quasi-concave in si , the set Bi (s−i) is convex for all i and s−i ,
so F is convex-valued.

I Kakutani’s fixed-point theorem⇒ F has a fixed point,

s∗ ∈ F (s∗) .( )
s∗ ∈i Bi s∗ ,∀

−i i ∈ N ⇒ s∗ is a Nash equilibrium.
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Existence of Mixed-Strategy Nash Equilibrium

Corollary 3
Every finite game has a mixed strategy Nash equilibrium.

Proof.
Since S is finite, each ∆ (Si) is isomorphic to a simplex in a Euclidean
space, which is convex and compact. Player i’s expected utility
ui (σ) =

∑
s ui (s)σ1 (s1) · · ·σn (sn) from a mixed strategy profile σ is

continuous in σ and linear—hence also quasi-concave—in σi . The game
(N,∆ (S1) , . . . ,∆ (Sn) , u) satisfies the assumptions of Theorem 9.
Therefore, it admits a Nash equilibrium σ∗ ∈ ∆ (S1) × · · · ×∆ (Sn), which
can be interpreted as a mixed Nash equilibrium in the original game. �

Mihai Manea (MIT) Game Theory February 17, 2016 67 / 69



Upperhemicontinuity of Nash Equilibrium

Fix N and S.
I X : compact metric space of payoff-relevant parameters
I S is a compact metric space (or a finite set)
I payoff function ui : S × X → R of every i ∈ N is continuous in

strategies and parameters
I NE (x) and PNE (x): sets of Nash equilibria and pure Nash equilibria,

resp., of game (N,S, u (·, x)) in which it is common knowledge that
the parameter value is x

I Endow the space of mixed strategies with the weak topology.

Theorem 10
The correspondences NE and PNE have closed graphs.
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Proof

Consider any sequence (sm, xm)→ (s, x) with sm ∈ PNE (xm) for each m.
Suppose that s < PNE (x). Then

ui

(
s′i , s−i , x

)
− ui (si , s−i , x) > 0

for some i ∈ N, s′i ∈ Si . Then (sm, xm)→ (s, x) and the continuity of ui

imply that
ui

(
s′i , s

m
−i , x

m
)
− ui

(
sm

i , s
m
−i , x

m
)
> 0

for sufficiently large m. However,

ui

(
s′i , s

m
−i , x

m
)
> ui

(
sm

i , s
m
−i , x

m
)

contradicts sm ∈ PNE (xm).
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