
Chapter 5 

Decision Making under Uncertainty
 

In previous lectures, we considered decision problems in which the decision maker does 

not know the consequences of his choices but he is given the probability of each con-

sequence under each choice. In most economic applications, such a probability is not 

given. For example, in a given game, a player cares not only about what he plays but 

also about what other players play. Hence, the description of consequences include the 

strategy profiles. In that case, in order to fit in that framework,  we would  need  to  

give other players’ mixed strategy profiles in the description of the game, making Game 

Theoretical analysis moot. Likewise in a market, the price is formed according to the 

collective actions of all market participants, and hence the price distribution is not given. 

In all these problems, the decision makers hold subjective beliefs about the unknown 

aspects of the problem and use these beliefs in making their decisions. For example, a 

player chooses his strategy according to his beliefs about what other players may play, 

and he may  reach these  beliefs  through a combination of  reasoning  and the  knowledge  

of past behavior. This is called decision making under uncertainty. 

As established by Savage and the others, under some reasonable assumptions, such 

subjective beliefs can be represented by a probability distribution, in the sense that the 

decision maker finds an event more likely than another if and only if the probability 

distribution assigns higher probability to the former event than latter. In that case, 

using the probability distribution, one can convert a decision problem under uncertainty 

to a decision problem under risk, and apply the analysis of the previous lecture. In this 

lecture, I will describe this program in detail. In particular, I will describe 
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• the conditions such consistent beliefs impose on the preferences, 

• the elicitation of the beliefs from the preferences, and 

• the representation of the beliefs by a probability distribution. 

5.1	 Acts, States, Consequences, and Expected Util-

ity Representation 

Consider a finite set C of consequences. Let S be the set of all states of the world. Take 

a set  F of acts f : S → C as the set of alternatives (i.e., set X = F ). Each state s ∈ S 

describes all the relevant aspects of the world, hence the states are mutually exclusive. 

Moreover, the consequence f (s) of act f depends on the true state of the world. Hence, 

the decision maker may be uncertain about the consequences of his acts. Recall that 

the decision maker cares only about the consequences, but he needs to choose an act. 

strategy profiles, the set of consequences is C = S1 × · · · × Sn. Since he does not know  
what the other players play, the set of states is S = S−i ≡ j=i 

among his strategies, the set of acts is F = Si, where each strategy si is represented as a 

function s−i �→ (si, s−i). (Here,  (si, s−i) is the strategy profile in which i plays si and the 

others play s−i.) Traditionally, a complete-information game is defined by also including 

the VNM utility function ui : S1 × · · · × Sn → R for each player. Fixing such a utility 

function is equivalent to fixing the preferences on all lotteries on S1 × · · · × Sn. 

Note that above example is only a way to model a player’s uncertainty in a game, 

although it seems to be most direct way to model a player’s uncertainty about the 

others’ strategies. Depending on the richness of the player’s theories in his decision 

making, one may consider richer state spaces. For example, the player may think that 

the other players react to whether it is sunny or rainy in their decisions. In that case, 

one would include the state of the weather in the space space, e.g., by taking S = 

Example 5.1 (Game as a Decision Problem) Consider a complete information game

with set N = {1, . . . , n} of players in which each player i ∈ N has a strategy space Si.

The decision problem of a player i can be described as follows. Since he cares about the

S . S
= ince he chooses

 j

���
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S−i × {sunny, rainy}. Sometimes, it may also be useful to consider a state space that 

does not directly refer to the others’ strategies. 

We would like to represent the decision maker’s preference relation � on F by some 

U : F → R such that 

U (f) ≡ E [u ◦ f ] 
(in the sense of (OR)) where u : C → R is a “utility function” on C and E is an 

expectation operator on S. That is, we want 

f � g ⇐⇒ U (f) ≡ E [u ◦ f ] ≥ E [u ◦ g] ≡ U (g) . (EUR) 

In the formulation of Von Neumann and Morgenstern, the probability distribution (and 

hence the expectation operator E) is objectively given. In fact, acts are formulated as 

lotteries, i.e., probability distributions on C.  In such a world,  as  we  have  seen  in  the  

last lecture, � is representable in the sense of (EUR) if and only if it is a continuous 

preference relation and satisfies the Independence Axiom. 

For the cases of our concern in this lecture, there is no objectively given probability 

distribution on S. We therefore need to determine the decision maker’s (subjective) 

probability assessment on S. This is done in two important formulations. First, Savage 

carefully elicits the beliefs and represents them by a probability distribution in a world 

with no objective probability is given. Second, Anscombe and Aumann simply uses 

indifference between some lotteries and acts to elicit preferences. I will first describe 

Anscombe and Aumann’s tractable model, and then present Savage’s deeper and more 

useful analysis. 

5.2 Anscombe-Aumann Model 

Anscombe and Aumann consider a tractable model in which the decision maker’s sub-

jective probability assessments are determined using his attitudes towards the lotteries 

(with objectively given probabilities) as well as towards the acts with uncertain conse-

quences. To do this, they consider the decision maker’s preferences on the set P S of all 

“acts” whose outcomes are lotteries on C, where  P is the set of all lotteries (probability 

distributions on C). In the language defined above, they assume that the consequences 

and the decision maker’s preferences on the set of consequences have the special structure 

of Von-Neumann and Morgenstern model. 
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Note that an act f assigns a probability f (x|s) on any consequence x ∈ C at any 

state s ∈ S. The expected utility representation in this set up is given by �� 
f � g ⇐⇒ u (x) f (x|s) p (s) . 

s∈S x∈C 

In this set up, it is straightforward to determine the decision maker’s probability 

assessments. Consider a subset A of S and any two consequences x, y ∈ C with x � y. 

Consider the act fA that yields the sure lottery of x on A,1 and the sure lottery of y on 

S\A. That  is,  fA (x|s) = 1 for any s ∈ A and fA (y|s) = 1 for any s �∈ A. (See Figure 

5.1.) Under some continuity assumptions (which are also necessary for representability), 

there exists some πA ∈ [0, 1] such that the decision maker is indifferent between fA and 

the act gA with gA (x|s) = πA and gA (y|s) = 1− πA at each s ∈ S. That is, regardless of 

the state, gA yields the lottery pA that gives x with probability πA and y with probability 

1− πA. Then,  πA is the (subjective) probability the decision maker assigns to the event 

A – under the assumption that πA does not depend on which alternatives x and y are 

used. In this way, one obtains a probability distribution on S. Using  the  theory  of  Von  

Neumann and Morgenstern, one then obtains a representation theorem in this extended 

space where we have both subjective uncertainty and objectively given risk. 

While this is a tractable model, it has two major limitation. First, the analysis 

generates little insights into how one should think about the subjective beliefs and their 

representation through a probability distribution. Second, in many decision problems 

there may not be relevant intrinsic events that have objectively given probabilities and 

rich enough to determine the beliefs on the events the decision maker is uncertain about. 

5.3 Savage Model 

Savage develops a theory with purely subjective uncertainty. Without using any objec-

tively given probabilities, under certain assumptions of “tightness”, he derives a unique 

probability distribution on S that represent the decision maker’s beliefs embedded in 

his preferences, and then using the theory of Von Neumann and Morgenstern he obtain 

a representation theorem – in which both utility function and the beliefs are derived 

from the preferences. 

1That is, fA (s) = x whenever s ∈ A where the lottery x assigns probability 1 to the consequence x. 
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Figure 5.1: Figure for Anscombe and Aumann 
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Take a set S of states s of the world, a finite set C of consequences (x, y, z), and take 

the set F = CS of acts f : S → C as the set of alternatives. Fix a relation � on F . We  

would like to find necessary and sufficient conditions on � so that � can be represented 

by some U in the sense of (EUR); i.e., U (f) = E[u ◦ f ]. In this representation, both the 

utility function u : C → R and the probability distribution p on S (which determines 

E) are derived from �. Theorems 1.2 and 1.3 give us the first necessary condition: 

P 1  � is a preference relation. 

The second condition is the central piece of Savage’s theory: 

5.3.1 The Sure-thing Principle 

The Sure-thing Principle If a decision maker prefers some act f to some act g 

when he knows that some event A ⊂ S occurs, and if he prefers f to g when he knows 

that A does not occur, then he must prefer f to g when he does not know whether A 

occurs or not. 

This is the informal statement of the sure-thing principle. Once we determine the de-

cision maker’s probability assessments, the sure-thing principle will give us the Indepen-

dence Axiom, Axiom 2.3, of Von Neumann and Morgenstern. The following formulation 

of Savage, P2, not only implies this informal statement, but also allows us to state it 

formally, by allowing us to define conditional preferences. (The conditional preferences 

are also used to define the beliefs.) 

P 2  Let f, f �, g, g� ∈ F and B ⊂ S be such that 

f (s) = f � (s) and g (s) = g � (s) at each s ∈ B 

and 

f (s) = g (s) and f � (s) = g � (s) at each s �∈ B. 

If f � g, then  f � � g� . 
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5.3.2 Conditional preferences 

Using P2, we can define the conditional preferences as follows. Given any f, g, h ∈ F 

and B ⊂ S, define acts fh and gh by|B |B 

f (s) if s ∈ B 
f|
h
B (s) =  

h (s) otherwise 

and 

h g (s) if s ∈ B 
g|B (s) =  . 

h (s) otherwise 

That is, fh and gh agree with f and g, respectively, on B, but  when  B does not occur, |B |B 

they yield the same default act h. 

Definition 5.1 (Conditional Preferences) f � g given B iff f|
h
B � g|

h
B . 

P2 guarantees that f � g given B is well-defined, i.e., it does not depend on the 

default act h. To  see  this,  take  any  h� ∈ F , and define fh
� 
and gh

� 
accordingly. Check |B |B 

that 

f|
h
B (s) ≡ f (s) ≡ f|

h
B 
� 
(s) and g|

h
B (s) ≡ g (s) ≡ g|

h
B 
� 
(s) at each s ∈ B 

and 

f|
h
B (s) ≡ h (s) ≡ g|

h
B (s) and f|

h
B 
� 
(s) ≡ h� (s) ≡ g|

h
B 
� 
(s) at each s ∈� B. 

Therefore, by P2, f|
h
B � g|

h
B iff f|

h
B 
� � g|

h
B

� 
. 

Note that P2 precisely states that f � g given B is well-defined. To see this, take f 
� � h�and g arbitrarily. Set h = f and h� = g�. Clearly,  f = fh and g = g . Moreover,  the  |B |B

conditions in P2 define f � and g as f � = f|
h
B 
� 
and g = g|

h
B. Thus, the conclusion of P2, 

“if f � g, then  f � � g�”,  is  the same as “if  f|
h
B � g|

h
B, then  f|

h
B 
� � g|

h
B 
� 
. 

Exercise 5.1 Show that the informal statement of the sure-thing principle is formally 

true: given any f1, f2 ∈ F , and  any  B ⊆ S, 

[(f1 � f2 given B) and (f1 � f2 given S\B)] ⇒ [f1 � f2] . 

[Hint: define f := f1 = f f1 = f f1 , g� := f2 = f f2 = f f2 , f � := f f2 = f f1 , and  1|B 1|S\B 2|B 2|S\B 1|B 2|S\B
f1 f2g := f = f . Notice that you do not need to invoke P2 (explicitly).] 2|B 1|S\B

�
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Null Events Imagine that the decision maker remains indifference towards any changes 

made to an action within an event B. Namely, for any acts f and g, the decision maker 

remains indifferent between f and g,  so long as  f and g are identical on S\B, no matter 
how widely differ on B. In that case, it is plausible to deduce that the decision maker 

does not think that event B obtains. Such events are called null. 

Definition 5.2 An event B is said to be null if and only if f ∼ g given B for all 

f, g ∈ F . 

Recall that our aim is to develop a theory that relates the preferences on the acts 

with uncertain consequences to the preferences on the consequences. (The preference 

relation � on F is extended to C by embedding C into F as constant acts. That is, 

we say x � x� iff f � f � where f and f � are constant acts that take values x and x� , 

respectively.) The next postulate does this for conditional preferences: 

P 3  Given any f, f � ∈ F , x, x� ∈ C, and  B ⊂ S, if  f ≡ x, f � ≡ x�, and  B is not null, 

then 

f � f � given B ⇐⇒ x � x � . 

For B = S, P3  is  rather  trivial, a  matter  of  definition of a consequence as a constant 

act. When B � S, P3 is needed as an independent postulate. Because the conditional =

preferences are defined by setting the outcomes of the acts to the same default act when 

the event does not occur, and two distinct constant acts cannot take the same value. 

5.3.3 Representing beliefs with qualitative probabilities 

We want to determine the decision maker’s beliefs reflected in � . Towards  this  end,  

given any two events A and B, we want to determine which event the decision maker 

thinks is more likely. To do this, take any two consequences x, x� ∈ C with x � x�. The  

decision maker is asked to choose between the two gambles (acts) fA and fB with 

x if s ∈ A 
fA (s) =  , (5.1) 

x� otherwise 

x if s ∈ B 
fB (s) =  . 

x� otherwise 

�
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If the decision maker prefers fA to fB, we  can  infer  that  he  finds event A more likely 

than event B, for he prefers to get the “prize” when A occurs, rather than when B 

occurs. 

Definition 5.3 Take any x, x� ∈ C with x � x� . Given any A,B ⊆ S, A is said to be at 

least as likely as B (denoted by A�̇B) if and  only  if  fA � fB , where  fA and fB defined 

by (5.1). 

We want to make sure that this yields well-defined beliefs. That is, it should not be 

the case that,  when  we  use some  x and x�, we infer that decision maker finds A strictly 

more likely than B,  but  when  we  use some other  y and y�, we infer that he finds B strictly 

more likely than A. Then next assumption guaranties that �̇ is indeed well-defined. 

P 4  Given any x, x�, y, y� ∈ C with x � x� and y � y�, define fA, fB , gA, gB by 

x if s ∈ A y if s ∈ A 
fA (s) =  , gA (s) =  

x� otherwise y� otherwise 

x if s ∈ B y if s ∈ B 
fB (s) =  , gB (s) =  . 

x� otherwise y� otherwise 

Then, 

fA � fB ⇐⇒ gA � gB. 

Finally, make sure that we can find x and x� with x � x�: 

P 5  There exist some x, x� ∈ C such that x � x� . 

˙We have now a well-defined relation � that determines which of two events is more 

likely. It turns out that, �̇ is a qualitative probability, defined as follows: 

Definition 5.4 A relation  �̇ between the events is said to be a qualitative probability 

iff 

1. �̇ is complete and transitive; 

2. for any B,C,D ⊂ S with B ∩ D = C ∩ D = ∅ , 

B�̇C ⇐⇒ B ∪ D�̇C ∪ D; 
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3. B ˙ �∅.�∅ for each B ⊂ S, and  S ˙

Exercise 5.2 Show that, under the postulates P1-P5, the relation �̇ defined in Defini-

tion 5.3 is a qualitative probability. 

5.3.4 Quantifying the qualitative probability assessments 

Savage uses finitely-additive probability measures on the discrete sigma-algebra: 

Definition 5.5 A probability measure is any function p : 2S → [0, 1] with 

1. if B ∩ C = ∅, then  p (B ∪ C) =  p (B) +  p (C), and  

2. p (S) = 1. 

We would like to represent our qualitative probability �̇ with a (quantitative) prob-

ability measure p in the sense that 

B�̇C ⇐⇒ p (B) ≥ p (C) ∀B, C ⊆ S. (QPR) 

Exercise 5.3 Show that, if a relation �̇ can be represented by a probability measure, 

then �̇ must be a qualitative probability. 

When S is finite, since �̇ is complete and transitive, by Theorem 1.2, it can be 

represented by some function p, but there might be no such function satisfying the 

condition 1 in the definition of probability measure. Moreover, S is typically infinite. 

(Incidentally, the theory that follows requires S to be infinite.) 

We are interested in the preferences that can be considered coming from a decision 

maker who evaluates the acts with respect to their expected utility, using a utility 

function on C and a probability measure on S that he has in his mind. Our task 

at this point is to find what probability p (B) he assigns to some arbitrary event B. 

Imagine that we ask this person whether p (B) ≥ 1/2. Depending on his sincere answer, 

we determine whether p (B) ∈ [1/2) or p (B) ∈ [0, 1/2, 1]. Given the interval, we ask 

whether p (B) is in the upper half or the lower half of this interval, and depending on 

his answer, we obtain a smaller interval that contains p (B). We  do  this  ad  infinitum. 

Since the length of the interval at the nth iteration is 1/2n, we  learn  p (B) at the end. 
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For example, let’s say that p (B) = 0.77. We  first ask if p (B) ≥ 1/2. He  says  Yes.  

We ask now if p (B) ≥ 3/4. He  says  Yes. We  then  ask  if  p (B) ≥ 7/8. He  says  No.  

Now, we ask if p (B) ≥ 13/16 = (3/4 + 7/8) /2. He  says  No  again. We  now  ask  if  

p (B) ≥ 25/32 = (3/4 + 7/8) /2.  He says No.  Now  we ask  if  p (B) ≥ 49/64. He  says  

Yes now.  At this point  we  know  that  49/64 ̃=0.765 ≤ p (B) < 25/32 ̃=0.781. As  we  ask  

further we get a better answer. 

This is what we will do, albeit in a very abstract setup. Assume that S is infinitely 

divisible under �̇. That  is,  S has 

• a partition {D1, D2} with D1 ∪ D2 = S and D1∼̇D1
2 ,1 1 1 1 1 

• a partition {D2
1, D2

2, D2
3, D4} with D1∪D2 = D1

1 , D3∪D4 = D2, and  D2
1∼̇D2

2∼̇D2
3∼̇D2

4 ,2 2 2 2 2 1

. • .. � � • a partition D1 , · · ·  , D2n 
with D1 ∪ D2 = Dn

1 
−1, . . . ,  D

2k−1 ∪ D2k = Dn
k 
−1, . . .,n n n n n n 

∼D2nand Dn 
1 ∼̇ · · ·  ˙ n , 

. • .. 

ad infinitum. 

S 

D1 
1 D2 

1 

D1 
2 D2 

2 D3 
2 D4 

2 
. . . 

. . . 
. . . 

. . . 

Exercise 5.4 Check that, if �̇ is represented by some p, then  we  must  have  p (Dn
r ) =  

1/2n . 

Given any event B, for  each  n, define � 
r� 
Dik (n,B) = max  r|B�̇ ,n 

i=1 

where we use  the convention that  ∪ri=1Dn
i = ∅ whenever r < 1. Define 

k (n,B) 
p (B) := lim . (5.2) 

n→∞ 2n 
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Check that k (n,B) /2n ∈ [0, 1] is non-decreasing in n. Therefore, limn→∞ k (n,B) /2n is 

well-defined. 

Since �̇ is transitive, if B�̇C, then  k (n,B) ≥ k (n,C) for each n, yielding p (B) ≥ 

p (C).  This proves the  =⇒ part of (QPR) under the assumption that S is infinitely 

divisible. The other part (⇐ ) is implied by the following assumption: 

P 6’  If B�̇C, then  there  exists  a  finite partition {D1, . . . , Dn} of S such that B�̇C ∪ 
rD for each r. 

Under P1-P5, P6’ also implies that S is infinitely divisible. (See the definition of 

“tight” and Theorems 3 and 4 in Savage.) Therefore, P1-P6’ imply (QPR), where p is 

defined by (5.2). 

Exercise 5.5 Check that, if �̇ is represented by some p�, then  

k (n,B) k (n,B) + 1≤ p � (B) < 
2n 2n 

at each B.  Hence, if both  p and p� represent �̇, then  p = p� . 

Postulate 6 will be somewhat stronger than P6’. (It is also used to obtain the 

continuity axiom of Von Neumann and Morgenstern.) 

P 6  Given any x ∈ C, and  any  g, h ∈ F with g � h, there exists a partition {D1, . . . , Dn}
of S such that 

g � hi
x and gi

x � h 

for each i ≤ n where 

x if s ∈ Di x if s ∈ Di 

hxi (s) =  and gi
x (s) =  . 

h (s) otherwise g (s) otherwise 

Take g = fB and h = fC (defined in (5.1)) to obtain P6’. 

Theorem 5.1 Under P1-P6, there exists a unique probability measure p such that 

B�̇C ⇐⇒ p (B) ≥ p (C) ∀ B,C ⊆ S. (QPR) 
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5.3.5 Expected Utility Representation 

In Chapter 5, Savage shows that, when C is finite, Postulates P1-P6 imply Axioms 2.1-

2.3 of Von Neumann and Morgenstern –as well as their modeling assumptions such as 

only the probability distributions on the set of prizes matter. In this way, he obtains 

the following Theorem:2 

Theorem 5.2 Assume that C is finite. Under P1-P6, there exist a utility function 

u : C → R and a probability measure p : 2S → [0, 1] such that � � 
f � g ⇐⇒ p ({s|f (s) = c}) u (c) ≥ p ({s|g (s) = c}) u (c) 

c∈C c∈C 

for each f, g ∈ F . 

2For the inifinte C, we need the infinite version of the sure-thing principle: 

P 7  If we have f � g (s) given B for each s ∈ B, then  f � g given B. Likewise, if f (s) � g given B 

for each s ∈ B, then  f � g given B. 

Under P1-P7, we get the expected utility representation for general case. 
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