14.06 Macroeconomics Spring 2003

Problem Set 7

(due on the day of Lecture # 11)

Problem 1 Romer Problem 4.3 (First-order autoregressive shocks) Let $\ln A_0$ denote the values of A in period 0, and let the behavior of $\ln A$ be given by

$$\ln A_t = \bar{A} + gt + \tilde{A}_t,$$

$$\tilde{A}_t = \rho_A \tilde{A}_{t-1} + \epsilon_{At}, \text{ s.t. } -1 < \rho_A < 1,$$

where A is an input in the production function, known as technology, and \tilde{A} reflects the fact that technology evolves according to a random process, specifically, a first-order autoregressive process.

- 1. Express $\ln A_1$, $\ln A_2$, and $\ln A_3$ in terms of $\ln A_0$, ϵ_{A1} , ϵ_{A2} , ϵ_{A3} , \bar{A} , g, and ρ_A .
- 2. Given that expectations of the ϵ_A 's are zero, what are the expectations of $\ln A_1$, $\ln A_2$, and $\ln A_3$ given $\ln A_0$, \bar{A} , ρ_A and g?

Problem 2 Augmented Romer Problems 4.4 and 4.5

Suppose the period-t utility function, u_t , is $u_t = \ln c_t + b(1 - l_t)^{1-\gamma}/(1-\gamma)$, $b > 0, \gamma > 0$. (Note that with $\gamma = 1$, utility reduces to the form seen in class: $u_t = \ln c_t + b \ln(1 - l_t)$.)

- 1. Consider the household's problem of maximizing utility subject to a budget constraint c = wl where is c consumption, l is hours worked, and w is the wage. Find the first order conditions and solve for the labor supply. How, if at all, does labor supply depend on the wage?
- 2. Consider an extension to the previous problem. Instead of a static problem, the consumer/worker lives two periods (and discounts second period utility $by \frac{1}{1+\rho}$.) There is no uncertainty.
 - (a) Write the lifetime budget constraint.
 - (b) Write down the first order conditions, and solve for the relative demand for leisure in the two periods.
 - (c) How does the relative demand for leisure depend on the relative wage? Show that an increase in both w_1 and w_2 that leaves w_1/w_2 unchanged does not affect l_1 or l_2 .

- (d) Suppose output is given by $Y_t = K_t^{\alpha}(A_tL_t)^{1-\alpha}$, $0 < \alpha < 1$. Solve for w_t , the wage rate (assume labor is paid its marginal product). Now suppose there is a positive technology shock at time 1, $A_1 = A$, A > 1 (assume that at time 2, technology returns to $A_2 = 1$). What is the effect, if any, on the relative wage and on the relative demand for leisure? Does it make sense?
- (e) How does the relative demand for leisure depend on the interest rate?, on the time preference rate?
- (f) Explain intuitively why γ affects the responsiveness of labor supply to wages and the interest rate.
- (g) Solve for the Euler equation, that is express the relationship between c_1 and c_2 . What if $\rho = r$?
- (h) Now assume that the household has initial wealth of amount Z > 0. Does the Euler equation derived in part g continue to hold?

Problem 3 Romer Problem 4.8 (A simplified RBC model with additive technology shocks). Consider an economy consisting of a constant population of infinitely-lived individuals. The representative individual maximizes the expected value of

$$\sum_{t=0}^{\infty} \frac{1}{(1+\rho)^t} u(C_t), \quad \rho > 0$$

where $u(C_t) = C_t - \theta C_t^2, \quad \theta > 0$

Assume that C is always in the range where u'(C) is positive.

Output is linear in capital, plus an additive disturbance: $Y_t = AK_t + e_t$. There is no depreciation; thus $K_{t+1} = K_t + Y_t - C_t$, and the interest rate is A. Assume $A \equiv r = \rho$. Finally, the disturbance follows a first-order autoregressive process: $e_t = \phi e_{t-1} + \varepsilon_t$, where $-1 < \phi < 1$ and where the ε 's are mean zero, i.i.d shocks.

- 1. Find the first-order condition (Euler equation) relating C_t and expectations of C_{t+1} .(Hint: set up the Bellman equation and maximize w.r.t K_{t+1} after substituting for C_t as functions of K_t , K_{t+1} etc.)
- 2. Guess that consumption takes the form $C_t = \alpha + \beta K_t + \gamma e_t$. Given this guess, what is K_{t+1} as a function of K_t and e_t ?
- 3. What values must the parameters α, β , and γ have for the first-order condition in part 1 to be satisified for all values of K_t and e_t ?
- 4. What are the effects of a one-time shock to ε (suppose $\Delta \varepsilon_t = 1$) on the paths of Y, K, and C?