Chapter 7

Passive tracer spectra and 3D
turbulence

For a passive scalar which obeys an equation of the form |,
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o VO = KV, (7.1)
we can write an equation for the variance (6?%),
92
agt> + V- (uf?) = —k(|VO|?). (7.2)

We assumed without loss of generality that (#) = 0. Under the assumption that
the tracer statistics are homogeneous and isotropic, we can write an equation for the
spectrum P(k) of this variance, analogous to (6.28),

2kk2P(k) = T(k) + F(k), (7.3)

where T'(k) is the nonlinear transfer of tracer variance, and F'(k) is an external source
of tracer variance. Two of the results derived for the kinetic energy spectrum carry
over to the tracer spectrum problem. (1) The dissipation of variance x must equal
the total injection of variance [;° F'(k)dk. (2) At wavenumbers far from the injection
scale and dissipation scale, variance is fluxed at a constant rate x (set by the injection
rate). Using these two results, we can derive the form of the spectrum P(k). Notice
however that there is a major difference between the kinetic energy and the tracer
problems. In the tracer inertial range y and k are not the only relevant parameters,
since the tracer field is subject to stirring by the flow. The flow parameters (e.g., ¢€)
also influence the tracer field.

We can derive the shape of the tracer spectrum in the range of wavenumbers where
both tracer and momentum dissipation can be neglected. Once again we assume that
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forcing is confined to large scales. In the so-called inertial-convective range the fluxes
of kinetic energy and tracer variance must be constant, if a statistically steady sate
is to be achieved. Thus we can state, in analogy to Obukhov’s argument for kinetic
energy, that the tracer flux is given by the available variance at wavenumber k divided
by the eddy turnover timescale,

kP(k)

T

(7.4)

Assuming that eddy stirring is dominated by local interactions we can write that
7= [K3E(k)]~'/2. But x is a constant and therefore we have,

P(k) ~ xk 2 E(k)~1/? (7.5)
Substituting for E(K) from K41 we have,
P(k) = Bxe Y35/ (7.6)

where (8 is some universal constant. The tracer spectrum in the inertial-convective
range has the same slope as the kinetic energy spectrum and is known as the Obukhov-
Corrsin spectrum.

Length scales

The kinetic energy spectrum becomes influenced by viscosity at a wavenumber k4 such
that Re ~ 1. In order to estimate the Reynolds number at a particular lengthscale,
we need a scaling for the velocity field. Using K41 we have,

(6v2) ~ (67“)2/3 - Uy~ (67“)1/3, (7.7)

where v, is an order of magnitude estimate of the velocity at a lengthscale r. Then

VT

Re, ~ (7.8)

o
Setting Re, ~ 1, we find that viscosity becomes important at the scale 1/r = kg ~
(e/v*)/4, the Kolmogorov scale.

By analogy with the kinetic energy spectrum, the passive tracer spectrum becomes
influenced by diffusion at a wavenumber k., where the Peclet number ~ 1. We have
two different scenarios, depending on whether the wavenumber k. is smaller or larger
than the Kolmogorov wavenumber kg .

If the Prandtl number Pr = v/k < 1, then the dissipation scale k. occurs within the

inertial range (k. < kq). Plugging v, ~ (er)'/? in the definition of the Peclet number,
v,

Pe, ~ 7.9

o (7.9
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we find that Pe, ~ 1 is achieved at a wavenumber 1/r = k. ~ (¢/s3)Y/* = Pr3/4k,.

However, if diffusion becomes important at wavenumbers larger than viscosity does
(i.e. Pr > 1), k. does not lie within the inertial range, so we cannot use the inertial
range scaling to obtain v,; if the energy spectrum FE/(k) drops off more rapidly than
k=3, then (dv,)? cannot be calculated from (6.50). In this range the velocity spectrum
drops off exponentially to zero. Thus at scales k shorter than the Klolmogorov scale,
the tracer is not stirred by eddies with scale k because such eddies do not exist. At
these scales the trcaer is stirred by the smallest scales present in the flow, i.e. by
eddies at the Kolmogorv scale. For these eddies v, ~ (¢/kg)'/® ~ vkq. Smaller scale
features feel this as a ”large-scale” flow. Then the local Peclet number at a scale r is,
v.r vkgr

Pe,= = = 2% 7.10
er= == (7.10)

By definition Pe, ~ 1 when r = 1/k., the wavenumber at which diffusion becomes
important. Thus,

1%
ko~ Cky. 7.11
L (7.11)

Depending on the relative length of the viscous and dissipative cutoff scales, the
passive tracer tracer spectrum has several different subranges. For k; << k, and
k << kq and k << k., neither x nor v are important. This is the inertial-convective
range considered above. If k << k4, but k > k. (for Pr < 1) then  is important,
but not v: the spectrum is in an inertial-diffusive range. If k << k., but k > ky
(for Pr > 1), then v is important but not x: the spectrum is in an viscous-convective
range. Finally for k > k4 and k > k., the spectrum is in a wviscous-diffusive range.
We consider the spectrum in each of these subranges separately.

Inertial-diffusive subrange

In the inertial diffusive range the flux of variance is no longer constant with k, since
diffusion is acting to reduce it. Instead, from (7.3),

dll

T(k) = ——— = 2kk*P(k). (7.12)

dk
The flux II(k) is not a constant in k£ in this range. Using Obukhov’s argument we
can also write,

kP (k)

(R E(k)]-12
Inertial range scaling for the energy still applies, so we can use K41 to express E(k)
and we find that,

T(k) = (7.13)

P(k) ~ T1(k)k ™2 E(k) Y% = e V3K 5311(k). (7.14)
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Substituting for P(k) in (7.12) we have,

dll
—— = —20re V3EVATI(E). (7.15)
dk
Solving for II(k) we get,
II(k) = xexp {—gﬁ/{e_l/gkf%] . (7.16)

If we substitute back into (7.14) we find,

3 k 4/3
P(k) = Be 1353y exp {—iﬁ <k_> } (7.17)

where k. = (¢/r®)"/*. Hence the spectrum of tracer variance behaves exponentially
for £ > k; when Pr < 1. This spectrum is not valid far into the inertial-diffusive
subrange because it assumes II(k) varies only slowly with k. (An alternative theory
of Batchelor et al. (1959) gives a k~'7/3 spectrum. Neither form of the spectrum has
been verified.)

Viscous-convective subrange

For Pr > 1 and k > kg, but k < k., the flux of variance II(k) is constant: II(k) = x.
k is not important, but v is. The energy field drops off rapidly for k > k;. Hence the
scalar perturbations experience a shear corresponding to that at a scale kg, vgakg =
(¢/v)/2. At k > k4 this shear appears like a smooth large-scale flow. P(k) must

satisty,

B kP(k)
X = B (k) (7.18)

Plugging the expression for the Kolmogorov wavenumber kg,

€

~1/2
P(k) = Cpyk™ (—) . (7.19)
v
This is known as the Batchelor spectrum, and Cp is the Batchelor constant.

There is experimental evidence for the Batchelor spectrum. Gibson and Schwarz
(JFM, 1963) observed the Batchelor spectrum for temperature and salinity in labora-
tory measurements in water, and the approximate behavior for temperature spectrum
is also suggested by field measurements of Grant et al. (JFM, 1968), Oakey and El-
liott (JPO, 1982) and others. There is however a wide scatter in the predicted values
of the universal constant C'z. The practical importance of these spectral expressions
lies in the fact that all scalar fluctuations and scalar dissipation are effectively deter-
mined by scales from the Batchelor range. The dissipation rates in turn determine
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the mixing coefficients for scalars which are critical to understand small-scale physics
of the oceans and large scale circulation and global climate. The knowledge of spatial
power spectra of temperature fluctuations at small scales is also needed in treating
problems of sound and light propagation in water.

Further reading: Lesieur, Ch VI; Tennekes and Lumley, Ch 8.
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