Active Tracers

We review mixing length theory applied to a set of active scalars (think in terms of
biological properties):
D
Ebi +V- (ubiobi) — V&Vbh, = Bi(b, X, t)

Split the field into an eddy part which varies rapidly in space and time and a mean part,
which changes over larger (order 1/¢) horizontal distances and longer (order 1/¢2) times:

bi = by(2|X, T) + bj(x, 21X, T)

We must allow for short vertical scales in both means and fluctuations. Counterbalancing
this difficulty is the fact that vertical velocities tend to be weak (order = +T X %) We
assume the mean flows are small % ~ eu’ and the coefficients in the reaction terms vary

rapidly in the vertical but slowly horizontally and in time.
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Vertical Structure

1} We assume the case with no flow has a stable solution:
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b; + Bi(g, z| X, T)

2) The eddy-induced perturbations satisfy
o p, 9 -
[dt +u - V-V- h,V] b; + dzwbwb =
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ob; 7
with ¥ = (90/0X, 8/0Y, 0/8z).

3) The equation for the mean is

—u'- ng = Bwb; —u'- VE,
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Summary:

Eddies generate fluctuations by horizontal and vertical advection of large-scale gra-
dients, but the strength and structure depends on the biologically-induced perturbation

decay rates.
Perturbations generate eddy fluxes and alter the average values of the nonlinear bio-

logical terms.
NPZ

A simple biological model (mixed layer):

D _  uPN q
EP_N+A;S ;Z{l exp(—vP)| —dpP + V&VP
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+dpP +dgZ + VsVN
or N=Np—-—P—Z

Mean-field approach
We can get a very similar picture using the mean-field approximation: take

%E‘t +%- VE‘ + V- (W) + a%wbioa; - Vﬂvgi =B; (EJV b/, x,t)
1 9°B; YEVE
2 9b;0by, P
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8tbﬁ- +%-Vb; + V- (u'b; —a'b’) + 8zwbwbi — VkVD; =

—u' - Vb + Bi(b + b, x,t) — Bi(b + b, x,1)

or (dropping the quadratic and higher terms)
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Ebg +7%- Vbl + a—zwm-ob; — ViVbj ~ —u’ - Vb; + By;b}
The differences are subtle: the MFA does not presume that the scale of b; is large but

linearizes in a way which may not be consistent.



Separable Problems

The mesoscale eddy field has horizontal velocities in the near-surface layer which
are nearly independent of z, and the vertical velocity increases linearly with depth w' =
8(x,t)z. The stretching satisfies

s(x,t) = -V -u(x,1)

For linear {or linearized perturbation) problems in the near-surface layers, we can separate
the physics and the biology using Greens’ functions.
We define the Greens function for the horizontal flow problem:

The perturbation equations can now be solved:

b;:—fdx’/dt'G(x,t|x',t’)u;n(x',t’)qﬁm,?;(z,t—t’)
fdx’/dt'G(x,t|x’,t’)s’(x’,t')(pi(2,tt’)

The two functions representing the biological dynamics both satisfy
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with B;; = 08,/0b;. These give the diffusive/ biological decay of standardized initial
perturbations

_ d_
¢m,i(za 0) — mebi 3 (Pz'(za 0) - Za_zbz

Demos, Page 3: perturbation structures <p’z’ struct> <ev of p’> <ev
of z°>



Simple Example

If we ignore vertical diffusion and advection and consider only one component with
Bi1 = — A, we have

ém,a’ = eiATVmBi
so that
—A(t—t' 7
b; = — |:/ dxffdt’e (t—t )G(x,tx',t’)u;l(x',t’)} Vnb;

The eddy flux takes the form

= U i [ e N T DG T D 0) | V.
- {f dx’/dtieﬂ(t—t’)Rmn(x,t|x’,t')} Vnb;

If we split the right-hand side into symmetric and antisymmetric parts, we find

mmn

ul b = K}, Vb + €k V2 Vo by

= 7KT/>LTLVEZ. — (gmnkvnqjé)zi + F»mnkvn(\pgbi)

The last term has no divergence and can be dropped. Thus the eddy flux is a mix of
diffusion and Stokes’ drift:

ul b = — K}, Wb + Vb

Both coefficients depend on the biological time scale A™!.
For the random Rossby wave case, the Stokes drift term is

KE
A
¥ 1

while the diffusivity tensor is

KE cos?(y) 0 )
KX=2 N— : )
A N VRS ( 0 sin’(y)
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Not so simple example

“Mixing length” models
Fluzr(b) = —k.Vb

even if appropriate for passive tracers are not suitable for biological properties whose time
scales may be comparable to those in the physics. Instead, we find

W= [ f dTeBaﬂRmn(T)} V.5,

where R,,, is the equivalent of Taylor’s Lagrangian covariance (but including &).
We divide the coefficient into symmetric (K) and antisymmetric terms related to the
Stokes drift (V)

W= KT, VT,
Note that
e Hddy diffusivities and wave drifts mix different components (flux of P depends on
gradient of 7).
o If R has a negative lobe, the biological diffusivities can be larger than that of a passive
scalar
e The quasi-equilibrium approximation

B?;jb;- =u -V
works reasonably well in the upper water column. In particular
Boi=gZexp(—vP) >0 . Byp=0

so that N
P=—uw V7 ulke C'=-¢£.VC
B2y
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Eulerian-Lagrangian

If x = 0, we can relate the relevant form of the Eulerian covariance

Ry (x,t)x' t") = ul, (%, )G (x, %/, )y (X', 1)

to Taylor's form. The Greens’ function equation

s

0 "
aG +u(x,t)- VG =d(x —x")é(t — ')

has a solution

G(x, t|x',t") = § (x — X{t|x', )

where

Z

%X(tx’,t’):u(X,t) , XX, t)=x

gives the Lagrangian position of the particle initially at x’ at time ¢/. But it is more
convenient to back up along the trajectory and let

Gx, 1%, 1) = 8(x' — &(t — ¥'x, 1))
where the particle at £ at time ¢’ passes x at time ¢ (and takes a time 7 for this tranistion).

Thus the £’s give the starting position, which, for stochastic flows varies from realization
to realization. We can solve

D etriet) = —uelrx i) EOKD =x

fort=0tor=1¢—1 to find &.
We can now define the generalization of the Lagrangian correlation function used by
Taylor

Ryn(t —t',x) = [dx’u’(x, DG (x, t)x, ) (x/, 1)

=ul (x,t)u! (E(t —V|x,1).{ — (t — 1))
or

Rmn (Ta X) = !u’;n (X, t)“’;z (E(T‘X, t)v t— T)

For homogeneous, stationary turbulence {on the scales intermediate between the eddies
and the mean), this will be equivalent to Taylor’s

Ripn (1) = (X + 7[x/, ), 0 + 7)ul, (%', )

but we include inhomogeneity and (for, general G, diffusion}.



