
Active Tracers 
We review mixing lengt,h theory applied to a set of active scalars (think in terms of 

biological properties): 

Split the field into an eddy part which varies rapidly in space and time and a mean part 
which changes over larger (order 116) horizontal distances and longer (order l/t2)times: 

bi = & ( t x , T )+ bi(x, t:t X , T )  

We nuist allow for short vertical scales in both nleans and fliictiiations. Co~interbalancing 
this difficiilty is the fact that vertical velocities tend to be weak (order x y).We 
assume the mean flows are small E NU' and the coefficients in the reaction terms vary ii: 

rapidly in the vertical h i t  slowly horizont,ally and in time. 

Vertical Strnctlire 

1) We assiime the case with no flow has a stable sohition: 
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2) The eddy-induced pert,~irbations satisfy 

witahV = (a/dX, iJ/aY. d l a t ) .  

3) The eqliation for the mean is 




Summary: 

Eddies generate fllict~iat,ions by horizontal and vertical advection of large-scale gra- 
dients, but the strength and str~ictiire depends on the biologically-ind~iced perturbation 
decay rates. 

Perturbations generate eddy fluxes and alter the average vahies of the nonlinear bio- 
logical terms. 

NPZ 

A simple biological model (mixed layer): 

Mean-field approach 

We can get a very similar pictiire using the mean-field approximation: take 

a- a -
,hi +Eii:.Vb, + V .  (u'b')+ 7~f , i , b i  -VKV&= b ' , ~ ,t)dt  dz 

u '  . ~6~+ +b', x, t)  - +b', X:t)~ i ( 6  

or (dropping the qliadratic and higher terms) 

The differences are subtale: the MFA does not presiinle that the scale of b, is large biit 
linearizes in a way which may not be consistent. 



Separable Problems 

The rnesoscale eddy field has horizontal velocities in the near-surface layer which 
are nearly independent of z; and the vertical velocit,y increases linearly with depth w' = 
s(x; t)z. The stretching satisfies 

For linear (or linearized perturbation) problems in the near-s~irface layers, we can separate 
the physics and t,he biology using Greens' fiinctions. 

We define the Greens fiinction for the horizontal flow problem: 

($+ u ( ~ ,  V -VcV1G(x,x'; f - f') = 6(x - xt)6(f - t')f )  

The pert,~irbation equations can now be solved: 

The two fiinctions representing the biological dynamics both satisfy 

with Bij = dBi/dbj. These give the diffusive/ biological decay of standardized initial 
perturbations 

d -
m i 0) = ~ i ( z :0) = z-biat7 
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S i m p l e  E x a m p l e  

If we ignore vertical diffiision and advection and consider only one component with 
a,, = A ,  we have 

q$rn,i = e p X 7 wrn6 .z 

so that 

P: = - [/dx' / d t ' e -* ( " ' )~ ( x ,  f x ' , t')4,(x1;f ')I wnhi 

The eddy flux takes the form 

= - [/ t x ' ,f ')I wn6idx' / d t ' e ~ * ( " ~ ) ~ ~ ~ . ( x ,  

If we split the right-hand side into symmetric and antisynmnletric parts, we find 

The last term has no divergence and can be dropped. Thus t,he eddy flux is a mix of 
diffiision and Stokes' drift: 

= -KX +I/;&rn7zF7ti 

Both coefficients depend on the biological time scale Apl .  
For the random Rossby wave case: the Stokes drift term is 

while the diffiisivity tensor is 
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Not so simple example 

"Mixing length' models 
Fluz(b) = n , V b  

even if appropriate for passive tracers are not suitable for biological properties whose time 
scales may be comparable to those in the physics. Instead, we find 

where R,,,, is the equivalent of Taylor's Lagrangian covariance (but inchiding 6 ) .  

We divide t,he coefficient into synnnetric (K) and antisymmetric terms related to the 
Stokes drift (V) 

Note that 
Eddy diffiisivities and wave drifts rnix different conlponents (flux of P depends on 
gradient of 2). 
If R has a negative lobe, the biological diffiisivities can be larger than that of a passive 
scalar 
The qiiasi-eqliilibri~inlapproxinlation 

works reasonably well in the upper wat,er cohim.  In particular 

so that 
I 1P = -u' . ~7 inl like C1= -6. v?? 

Demos, Page 5 :  complex diffusion <transport coeff: display -geometry 
+0+0 -bordercolor white -border 20x20 -rotate 90 "glenn/12.822t/graphics/tO.p~> 
lip Z grad flux of P t 1 . p ~  <quasiequilibrium fluxes: display -geometry +0+0 -
bordercolor white -border 20x20 -rotate 90 "glenn/l2.822t/graphics/tla.ps> down-
gradient Kpp,KZZt2.ps 



Eulerian-Lagrangian 

I f  6 = 00:we can relate the relevant form o f  the Eiilerian covariance 

R,,,, (x ,t x': t') = (x ,t ) G ( x ;tx': t l )?rn(x';t') 

t o  Taylor's form. T h e  Greens' fiinction equation 

has a sohition 
G ( x ,  t x ' ,  t') = b ( x  - X ( t x l ,t ' ))  

where 
d
d t X ( t ~ ' :t') = u ( X ,t )  , X ( t 1 x ' ,t') = x I 

gives the Lagrangian position o f  the particle initially at x' at time t'. Biit it is more 
convenient t o  back l ip  along the trajectory and let 

G ( x ,  t x ' ;  t ')  = b(x' - [ ( t  - t ' x ,  t ) )  

where the particle at [ at time t' passes x at time t (and takes a time r for this tranistion). 
Thiis t,he 6's give the starting position: which, for stochastic flows varies from realizat,ion 
t o  realization. W e  can solve 

for r = 0 t o  r = t - t' t o  find [. 
W e  can now define the generalization o f  the Lagrangian correlation fiinction iised b y  

Taylor 

R,,,(t - t',x)  = rlx1?r'(x, t ) G ( x ,  t x': t1)?r'(x',t ' )  

= ( x) I ( ( - t ' x ,t ) ;t - (t- t ' ))  

Rm,(r; X )  = ILL(X; t ) ,  t t ) ~ & ( [ ( r x ,  - r )  

For homogeneoils: stationary tiirblilence (on  the scales intermediate between t,he eddies 
and the mean), this will he eqiiivalent t o  Taylor's 

R,, ( r )= & ( X ( t l+ r x',  t ') ,  t' + r)u<, (x ' :  t') 

biit we incliide inhomogeneity and ( for,  general G ,  diffiision). 


