Particle Dispersion

Random Flight — Lagrangian dispersion

As an example, we examine the random flight model, which assumes that the accel-
erations have a stochastic component and use Newton’s equations

dX = Vdi
dV = Adt + 8dR

where A is the acceleration produced by deterministic (or large-scale) forces. We include
random accelerations with the random increment dR. satisfying (dR; dR;) = d;;dt.
As examples, consider a drag law for the acceleration

A=—r(V-u

with u being the water velocity. The dispersion is determined by 8 and r; from the
equations, we can show that

(Vi) = g
(% — )V = ) S5
(XX, 0) — (X0 X,(0) = a0

The latter corresponds to a diffusivity of k = 52/2r2.

o Area grows like 4t (6xt in 3-D)
e Velocity variance is e
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Taylor dispersion

In 1922, Taylor described the dispersion under the assumption that the Lagrangian
veloeity had a known covariance structure. He considered just

G,
X =
a0 Vit)

We find that 5
a—th;Xj = V%Xj + XFLVJ

and, in the ensemble average,

3
8_t<X”'Xj> = (Vi.X;) + (XiV5)

If we substitute .
X =X, +/ V(t"dt
0

and look at the case where {V) = 0 and the flow is stationary, we have

8 t
a—t(Xin) = /0 dt' RE(t) + RE(t)

where R{“j is the covariance of the Lagrangian velocities
Ri(t) = (Vilto + 1) Vj(to))

For isotropic motions R;(t) = U?R"(£)8;; with R (t) being the autocorrelation function;
the change in r-variance is given by

a 2 2 '
X0 =2U [0 R (1)

From this formula, we see that

e For short times,
(X2 = U242

e For long times, if the integral Tin, = fooo RL(#)dt is finite and non-zero,

(Xz) - 2U2Ti£ntt



Relation to diffusivity

Consider the diffusion of a passive scalar

0 2
aC’—nVC’

and define moments of the distribution

o JTC
(&™) [ie

Integrating the diffusion equation gives conservation of the total scalar, under the assum-
tion that the initial distribution is compact and the values decay rapidly at infinity

if/c_ﬁjéﬁ-vczo
ot
The first moment gives

i/fﬂ:Czﬁ//ﬁVQC—m/fV-xVC—iC:m‘%fl-[mVC—f{C]—O
ot , dx

so that -2 (z) = 0. (This result would be different if there were flow as well.)

The second moment

%//xzc_n'[/ﬁv%:n/fv[xzvc—2xi0]+20=2ﬁffc

implies that
e,
ot
Thus we can identify the effective diffusivity

(%) = 2k

K = U2Tint



Small amplitude motions

If we assume that the scale of a typical particle excursion over time Tj,,; is small
compared to the scale over which the flow varies, we can relate the Lagrangian and Eulerian
statistics. The displacement & = X;(#) — X;(0) satisfies

Jd 0
(‘)_tft =u{x+ &, 1) = u(x,t) + Eja—mjui(x, H+...
and we can substitute the lowest order solution
t
§i(t) = / dt'u;(x,t')
0
into the second term above to write

25- = u;(x t)+i/t (X, (%, 8)
E)t i — Uy * 3.’1‘3 0 uj H Uy H

and average, recognizing that the mean Lagrangian velocity is just (%fz)

(uhy = {ug) + % / (g, D (x, 1))

For simplicity, we assume that the turbulent velocities are large compared to the mean;
then this becomes

8 t a t
L . N N — .
(uyy = {ug) + _B:Bj /0 Rij(x,t — 1) = {u;) + oz, '/(; drRi;(x,7)

Let us assume that the integrals with respect to 7 exist and split the covariance into
its symmetric and antisymmetric parts

3. 1%,
Ly — N PS5, — Do~
(uf) = () + 5= D3y ) + =D
with
Y P B
Kij=Djj =5 | Rij(e,7) + Rji(x,m) . D=5 | Rij(z,7) — Rji(x, 7)

We can write an arbitrary antisymmetric tensor in terms of the unit antisymmetric tensor

47
Dy = —eu Vg

so that the contribution to the Lagrangian velocity is

3
uf = _Eijkquk y uS =-VxV¥

7



Note that the antisymmetric part of the contribution to the Lagrangian velocity is nondi-
vergent:

o 0 5
—D(x)=V"- =0
8$z' axj K (X) v

Thus the Lagrangian mean velocity has contributions from the mean Eulerian flow, from
the Stokes’ drift, and a term which tends to move into regions of higher diffusivity

a
() = (ui) + 07 + 5 —Kij (x)
Ox; I

We will discuss the meanings of these terms in more detail next.

Chaotic advection and Stokes’ drift

We start with the basic wave
= %sin(qr[a: — t]) sin(my)
and add a small amount of a second wave
P = m% sin{w(x — t]) sin(my) + a% sin(dw |z — c1t]) sin(dwy)
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We look at the particle trajectories by solving the Lagrangian equations as above

%)

—&E=u(x+§&t

€= ulx+ &1

Let’s begin with the simplest case without the second wave. For small € (which is the ratio
of the flow speed to the phase speed, we can find an approximate solution (as before) by
iterating

a ; J
a(f% ~ u;(x,t') + @——axj wi(x, )+ ...
a * ! !
~u(x,t) + =— | ui(x, t)u(x, t)dt
82’:3 0

The mean Lagrangian drift is therefore

O = 2 [ Ryxr)d
& = ij(x, 7)dT
[)t E):c i Jo I ’
J
For the primary wave
2 .
Ris(r) = € COS TT COsZ Y — cos T $in Ty COs TY
K 27 \ sin 77 sin Ty cos wY cos T sin” Ty
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and the drift 1s
ur = af _< cos(2my)[1 — cos(nt)]
L = gy 1= 5 Yy
(‘) 2
vp = E@ = % sin(27y) sin 7t

Note that there is a mean drift )
ur = % cos(2my)

prograde on the walls and retrograde in the center. Demos, Page 5: drift <amp=0.2>
<amp=0.2 comoving> <amp=1.0> <amp=1.0 comoving> <stokes drift>
<meanz

FINITE AMPLITUDE
In the frame of reference of the wave (X' = X — ct)

%X’:u(X’)—CZQXV(@b—Fcy)

Thus particles simply move along the streamlines. At some Lagrangian period T}, the
particle will have moved one period to the left so that
X(Tw) — X(0) A TE

! = — = — = = (C¢— — =0 _——_—
X(Tr)=X0)—A=X{T1) - Tt = Uy, T T, e(l TL)

Stokes drifts occur when the Lagrangian period differs from the Eulerian period. Trapped
particles have

X'(T)=X(0)=X(Te)—cTr = up= X(TL;; X0 _,

Back to chaotic advection...

When we have « non-zero, the trajectories become less regular in the vicinity of the
stagnation points. A line of particles approaching the point begins to fold, with some fluid
crossing into the interior and some being ejected. Which way a parcel goes depends on the
phase of the perturbing wave as it nears the stagnation point.

Demos, Page 6: 1lobe dynamics <alpha 0.008>

We can look at Poincaré sections (snapshots at the period of the perturbing wave)
at various amplitudes to see the mixing regions Demos, Page 6: poincare sections
<alpha=0> <alpha=0.002> <alpha=0.004> <alpha=0.008> <alpha=0.016>
<alpha=0.032>  <alpha=0.064> <alpha=0.128>

The mixing across the channel is still blocked for o small enough < 0.05 so the mixing
is still diffusion-limited, although some gain is realized by enhanced flux out of the wall
and a decrease in the width of the blocked region.

Demos, Page 6: Continuum <steady> <weak> <strong>
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Tracer fluxes

Next time, we’ll see that the mean concentration (in appropriate limits) satisfies

J

—(C) = =V - [(ul’) - sV C]

and
;

()0’ 0) == | [t 540 = [uf = Koz | (©)

With this form, we can see that the Stokes’ drift does not alter tracer variance {or max-
ima), while the K;; term tends to reduce the maxima and the tracer variance. Thus it is
appropriate to think of K;; as a diffusivity tensor.

In addition, we note that for variable K, the center of masgs of the tracer satsfies

%Xi f C=- f 2V [((ug) + uf — K Vi)C]
= f(ui)C +u C — Ky ViC
= f{ui)C +uf C + [V Ky]C
o~ [(uz')+uf+kaﬁk]fc

z(uf)fC

so that the center of mass of the tracer (for narrow distributions) indeed moves with the
mean Eulerian flow, the Stokes’ drift and the up-diffusivity-gradient term.



Random Rossby Waves

Consider a randomly-forced Rossby wave in a channel:

02 4 J(, V0 + y) = ARelr (D sinlty) — 7T
where r is randomly distributed on a disk of radius ry. This gives a streamfunction
¥ = Re[a(t)e*™] sin(fy)
with
wy

da—i—( +iw)a =
L+ (y zw,—ﬁkf!

dt
and w = —Fk/(k* + £2).

2
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t
o=2 / dTe*("’*%"”)T'r(t —T)

From this, we find

Ui,y (o, v, ) =

U2 '
2—5026*7’("‘ﬂt ) cos[k(z — ') — w(t — )] sin{fy) sin{£y’)
Lo 0y cos wT cos® Ly %sin wT sin £y cos Ly
Rmn(’r) = EUge k.- . ‘ k2 .2
—Zsinwr sin £y cos Ly 77 €os w7 sin” £y
Hence the mean drift is given by
o T (eos(ay) . 2ysin()
u' = —————(—cos(2y), 2vysin(2y
64(v2 + 1)
or KE
u’ = — (—cos(2y) , 2vsin(2y))
gl
with KE = u? +v2.
The Stokes drift term is
KE
s
u’ = —cos(2y), 0

KE  { cos?(y) 0
Kij =2y ( o2
1 0 sin”(y)

Demos, Page 8: stokes drift <1in vs act sd> <mean drift>
Conclusions:

e Rossby waves cause mean westward drifts at the edges and eastward drifts in the
center.
e Eddy diffusivities are spatially variable and anisotropic.



