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Elasticity of Rocks 
Assigned Reading: 
Gueguen, Yves and V. Palcisukas, Introduction to the Physics of Rocks, Chapter III, p. 

53-61; Chapter IV. 73-92. (Essentially a discussion of some of the material we 
have covered over the last couple of week. I hope this reading is easier no than it 
would have been before we started.)+ 

 
Resource reading: 
Atkinson BK (1987) Fracture Mechanics of Rock. Academic Press, London UK, pp 534 

Chapters 1&11 
Johnson AM (1970) Physical Processes in Geology. Freeman Cooper, San Francisco CA, 

Chapters 9-11. 
Clyne, T. W., and P. J. Withers, An Introduction to Metal Matrix Composites, Cambridge 

University Press, 1993. 
Hearmon, R. F. S., An Introduction to Applied Anisotropic Elasticity, Oxford University 

Press, 1961. 
Mavko, G., T. Mukerji, and J. Dvorkin, The Rock Physics Handbook, Cambridge Univ. 

Press, 1998. 
Watt, J. P., G. F. Davies, and R. J. O’Connell, “The Elastic Properties of Composite 

Materials”, Rev. Geophys. Space Phys., 14, 541-563, 1976. 
Muskhelishvili, N. I.(Nikolaĭ Ivanovich),1891- Some basic problems of the mathematical 

theory of elasticity; fundamental equations, plane theory of elasticity, torsion, and 
bending, Groningen, P. Noordhoff, 1963. QA931.M9871 1954 

 
Exact Elastic Treatment of Simple Geometry 
Fundamental Equations of Elasticity:  

Equilibrium, Compatibility, Constitutive Law 
Biharmonic Equation, Airy Stress Function 

Particular Solutions 
Internally Pressurized Cylinder 
Externally Stressed Hole 
Externally Stressed Elliptical Hole 

Elastic Moduli of Cracked Solids 
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Basic Equations of Isotropic Elasiticity 
Elasticity of isotropic elastic materials 
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Proof:  
Strain may be viewed as the differential of the displacement change 
vector. Provided that no gaps open up and that no overlaps develop, the 
displacements must be continuous.  
If the displacement change vector, [ ]1 2 3, ,u u u=∆u , then  
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In general any problem for the statics of a three 
dimensional body loaded externally and with no body 
forces is well-posed using these equations as long as 
sufficient boundary conditions are given. 
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Consider plane strain and plane stress (i.e. 2-D) without body 
forces: 
Equilibrium 
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Compatibility 
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Elasticity 
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Equilibrium, Compatibility and Elasticity require 
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Airy Stress Function: 

Assume that there exists a function, Φ, the Airy stress function, such that 
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Then from above,  
4 0∇ Φ =  Biharmonic Equation 
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Biharmonic Equation: Method of solution is 1.)Find a 
general Airy’s stress function with appropriate 
symmetry; 2.) Use differential equations to get stress; 
3.) Use boundary conditions to find arbitrary 
constants: 4.) Use Hook’s law to get strains; 5.) 
Integrate to get displacements 
 

Elasticity in Problems with Cylindrical and Spherical Symmetry 
In problems with cylindrical symmetry, r, θ, z: 
Strain: 
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The gradient operator and the Laplacian in cylindrical coordinates are 
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Equilibrium: 

In problems with cylindrical symmetry, r, θ, z: 
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Spherical symmetry, r, θ, φ,  
Special case that displacements occur in the radial direction only: 
Strain: 

In problems with spherical symmetry, r, θ, φ, for the special case that 
displacements occur in the radial direction only: 
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Equilibrium: 

( )1 2 0, 0,rr
rrr r
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Example 1: Stress around a circular pipe (tube) 
Assume plane strain and plane stress, that the pipe is internally pressured 
with no applied stresses. 

New boundary conditions are 
σrr=-P and σrθ=0   at r=ro 

 

σrr= σrθ=0   at r=∞ 
Notice that Φ must be independent of θ. 
Now, let  r=et  
 Φ=emt and substitute into the biharmonic. 
A general solution is 
Φ=A+Br2+C•ln(r)+Er2•ln(r) 
 
Check to see if Φ satisfies the biharmonic 
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so... 
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ow solve for the constants in the solution using the boundary conditions 
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s: Stress falls off as r2, depends linearly on P 
esses are tensile. 
s occur they occur along planes of maximum 

ress.  
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Example 2: Stress and Strain Concentration around a Spherical 
Hole loaded by a pressure at infinity: 
Strain about a spherical hole. 

Suppose that a body loaded by pressure σ  contains a spherical hole.  
By symmetry we suppose that the displacements must be a function of r 
only. Then guess that  
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Pore Compressibility: 
Suppose we consider a spherical hole with an pressure σ applied at 
infinity.The material is elastic. From symmetry we suppose that the strain 
will be in the radial direction only, and that it will be proportional to the 
applied pressure: 
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Then the change in pore volume is 24 3p p
dRdV R dR V
R
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So  the volumetric strain, Vε  is 
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and the pore stiffness is  
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If the Poisson’s ratio is 0.25, then 1/Kφ is 2.25; as the solid material 
becomes incompressible the pore compressibility becomes large. 

B ν( )

ν  
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Stress concentrations around pores, flaws, and inclusions: 
Cylindrical 
hole 

Internal P  

“ External P  
“ Uniaxial load, σ 

 
 

Spherical 
hole 

Internal P  

“ External P  
 Uniaxial load, σ  
Elliptical 
hole 

External P  

“ Biaxial Load, S  
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