12.520 Lecture Notes 25

The Stream Function

For continuum mechanics in general and fluid mechanics specifically, a number of "laws" are expressed in terms of differential equations. For example,

1) Newton's second law $(F = ma)$ (general)

$$
\frac{\partial \sigma_{ji}}{\partial x_j} + \rho f_i = \rho \frac{Dv_i}{Dt}
$$

2) Rheology (constitutive equation) (Newtonian fluid)

$$
\sigma_{ij} = -p\delta_{ij} + 2\eta \dot{\varepsilon}_{ij}
$$

3) Definition of strain rate (general)

$$
\dot{\varepsilon}_{ij} = \frac{1}{2} \left(\frac{\partial v_i}{\partial x_j} + \frac{\partial v_j}{\partial x_i} \right)
$$

- 4) Continuity (conservation of mass) (incompressible)
	- ∂*vi* ∂*xi* $= 0$

These 4 coupled first order differential equations, plus boundary conditions, can be solved to determine fluid flow for a variety of interesting applications.

Alternatively, they can be combined to form a single fourth order differential equation.

For fluids, this fourth order equation often involves the stream function.

Consider a 2-D flow with velocities v_1 , v_3 in the x_1 , x_3 plane ($v_2 = 0$)

$$
If v_1 = -\frac{\partial \Psi}{\partial x_3}
$$

$$
v_3 = \frac{\partial \Psi}{\partial x_1} \implies \nabla \cdot \underline{v} = \frac{\partial v_i}{\partial x_i} = -\frac{\partial^2 \Psi}{\partial x_1 \partial x_3} + \frac{\partial^2 \Psi}{\partial x_3 \partial x_1} = 0
$$

Incompressibility is automatically satisfied!

[In general, if $y = \nabla \times \Psi$, $\nabla \cdot y = 0$. Here $\Psi = (0, \Psi, 0)$]

Substituting into the (steady) Navier-Stokes equation

$$
-\frac{\partial p}{\partial x_1} - \eta \left(\frac{\partial^3 \Psi}{\partial x_1^2 \partial x_3} + \frac{\partial^3 \Psi}{\partial x_3^3} \right) + \rho f_1 = 0
$$

$$
-\frac{\partial p}{\partial x_3} + \eta \left(\frac{\partial^3 \Psi}{\partial x_1^3} + \frac{\partial^3 \Psi}{\partial x_1 \partial x_3^2} \right) + \rho f_3 = 0
$$

Now take
$$
\frac{\partial}{\partial x_3}
$$
 of first, $\frac{\partial}{\partial x_1}$ of second
\n
$$
-\frac{\partial^2 p}{\partial x_1 \partial x_3} - \eta \left(\frac{\partial^4 \Psi}{\partial x_1^2 \partial x_3^2} + \frac{\partial^4 \Psi}{\partial x_3^4} \right) + \rho \frac{\partial f_1}{\partial x_3} = 0
$$
\n
$$
-\frac{\partial^2 p}{\partial x_1 \partial x_3} + \eta \left(\frac{\partial^4 \Psi}{\partial x_1^4} + \frac{\partial^4 \Psi}{\partial x_1^2 \partial x_3^2} \right) + \rho \frac{\partial f_3}{\partial x_1} = 0
$$

Subtract:

$$
\eta \left(\frac{\partial^4 \Psi}{\partial x_1^4} + 2 \frac{\partial^4 \Psi}{\partial x_1^2 \partial x_3^2} + \frac{\partial^4 \Psi}{\partial x_3^4} \right) + \rho \left(\frac{\partial f_3}{\partial x_1} - \frac{\partial f_1}{\partial x_3} \right) = 0
$$

$$
\frac{\partial^4 \Psi}{\partial x_1^4} + 2 \frac{\partial^4 \Psi}{\partial x_1^2 \partial x_3^2} + \frac{\partial^4 \Psi}{\partial x_3^4} = \nabla^2 (\nabla^2 \Psi) = \nabla^4 \Psi
$$

 ∇^4 is called biharmonic operator.

For uniform or no $f: \nabla^4 \Psi = 0$

Advantages of using the biharmonic operator are

- 1. only one equation
- 2. efficient solution

Disadvantage: Loss of "physical insight".

Physical Interpretation of Stream Function

Consider triangle APB.

For incompressible fluid,

flux_{AP} + flux_{BP} + flux_{AB} = 0
\n
$$
-v_3 \delta x_1 + v_1 \delta x_3 + flux_{AB} = 0
$$
\nflux_{AB} = $v_3 \delta x_1 - v_1 \delta x_3 = \frac{\partial \Psi}{\partial x_1} \delta x_1 + \frac{\partial \Psi}{\partial x_3} \delta x_3 = \delta \Psi$
\nor
$$
\int_{A}^{B} d\Psi = \Psi_B - \Psi_A
$$

Difference in Ψ represents the flux crossing the curve.

Solution of biharmonic

Polynomials (e.g., for Conette flow, $\Psi = -\frac{v_0 x_3^2}{2}$ $\frac{0^{1/3}}{2h}$)

Separation of variables:

$$
\Psi = X(x)Z(z)
$$

$$
\nabla^4 \Psi = 0 \Longrightarrow X^{\prime\prime\prime\prime} Z + 2X^{\prime\prime} Z^{\prime\prime\prime} + XZ^{\prime\prime\prime\prime\prime} = 0
$$

$$
\frac{X''''}{X} + 2\frac{X''}{X}\frac{Z''}{Z} + \frac{Z''''}{Z} = 0
$$

Harmonic $\Psi = \sin \frac{2\pi x}{l}$ $\frac{\lambda x}{\lambda}Z(z)$

Solution: $\Psi = [(A+Bz) \exp(\frac{2\pi z}{\lambda}) + (C+Dz) \exp(-\frac{2\pi z}{\lambda})] \sin(\frac{2\pi x}{\lambda})$

Physical boundary conditions: $T_n = 0$ $T_7 = 0$

In x_1 ', x_3 ' coordinates, at $x_3 = \xi(x_1)$:

$$
\sigma_{3'3'} = 0
$$

$$
\sigma_{3'1'} = \sigma_{1'3'} = 0
$$

Have solution to biharmonic in terms of x_1 , x_3 -- easily applied at $x_3 = 0$.

Need to take physical (x_1, x_3) boundary conditions and

- 1. rotate to x_1 , x_3 space
- 2. Taylor's series expansion
- 3. subtract out hydrostatic reference state

Result (to first order in ξ/λ)

$$
\sigma = \begin{pmatrix} ? & ? & 0 \\ ? & ? & 0 \\ 0 & 0 & \rho g \xi \end{pmatrix}
$$

4. solve biharmonic.

Postglacial Rebound

Decay of Boundary Undulations (1/2 space, uniform η)

- Assume uniform η
- Subtract out lithostatic pressure $P = p \rho g x_3$
- Assume ^ρ*g* uniform
- Use stream function Ψ

$$
v_1 = -\frac{\partial \Psi}{\partial x_3} \qquad v_3 = \frac{\partial \Psi}{\partial x_1}
$$

 $\Rightarrow \nabla^4 \Psi = 0$

Solution: $\Psi = \left[(A + Bkx_3) \exp(-kx_3) + (C + Dkx_3) \exp(kx_3) \right] \cdot \sin kx_1$

Boundary conditions:

at $x_3 = 0$ (mathematical, not physical)

$$
\sigma_{33} = \rho g \zeta
$$

$$
\sigma_{13} = 0 = \eta \left(\frac{\partial v_1}{\partial x_3} + \frac{\partial v_3}{\partial x_1} \right)
$$

at $x_3 \rightarrow \infty$, must be bounded

$$
\Rightarrow C = D = 0
$$

In order that $\sigma_{13} = 0$ at $x_3 = 0$,

$$
-\frac{\partial^2 \Psi}{\partial x_3^2} + \frac{\partial^2 \Psi}{\partial x_1^2} = 0
$$

$$
\Rightarrow B = A
$$

or $\Psi = A(1 + kx_3) \exp(-kx_3) \cdot \sin kx_1$

Then

$$
v_1 = Ak^2x_3 \exp(-kx_3) \cdot \sin kx_1
$$

\n
$$
v_3 = Ak(1 + kx_3) \exp(-kx_3) \cdot \cos kx_1
$$

\nat $x_3 = 0$ $v_3 = \dot{\zeta} = Ak \cos(kx_1)$

Now

$$
\sigma_{33} = -p + 2\eta \dot{\varepsilon}_{33}
$$

$$
\dot{\varepsilon}_{33} = 0 \text{ at } x_3 = 0
$$

To get *p*, use
$$
-\frac{\partial p}{\partial x_i} + \eta \frac{\partial^2 v_i}{\partial x_j \partial x_j} + \rho x_i = 0
$$

for
$$
i = 1
$$

\n
$$
\Rightarrow -\frac{\partial p}{\partial x_1} + \eta \left(\frac{\partial^2 v_1}{\partial x_1^2} + \frac{\partial^2 v_1}{\partial x_3^2} \right) = 0
$$

Substitute for v_1 and integrating \Rightarrow $p|_{x_3=0} = 2\eta k^2 A \cos kx_1$

But
$$
p = -\rho g \zeta \Rightarrow A = -\frac{\rho g \zeta_0}{2k^2 \eta}
$$

\nOr $\dot{\zeta}_0 = -\frac{\rho g \zeta_0}{2k \eta} = -\frac{\rho g \lambda \zeta_0}{4 \pi \eta}$
\nOr $\zeta_0 = \zeta_0|_{t=0} \exp(-\frac{\rho g t}{2k \eta}) = \zeta_0|_{t=0} \exp(-\frac{t}{\tau})$
\nwhere $\tau = \frac{2k\eta}{\rho g} = \frac{4\pi \eta}{\rho g \lambda}$
\nSolving for η : $\eta = \frac{\rho g \lambda \tau}{4 \pi}$
\nFor curves shown,

$$
\begin{array}{c}\n\tau: 5000 \text{ yr} \\
\lambda: 3000 \text{ km}\n\end{array}\n\right\} \Rightarrow \eta: 10^{21} \text{ Pa}
$$

Note: stream function $~ \sim ~ \exp(-kx_3) = \exp(-\frac{2\pi x_3}{\lambda})$

Falls off to
$$
\sim 1/e
$$
 at x_3 : $\frac{\lambda}{2\pi}$

Senses to fairly great depth

⇒ postglacial rebound doesn't reveal the details of mantle viscosity structure, but only the gross structure.

Note: Behavior at Hudson Bay and Boston different:

Is this consistent with uniform 1/2 space?

$$
\tau = \frac{4\,\pi\eta}{\rho g \lambda}
$$

Decompose into Fourier components

Details depend on geometry of ice load and elastic support of load.

Suppose we require faster relaxation for short λ than for long λ .

How to get solution? What are the boundary conditions?