12.520 Lecture Notes 22

Fluids (continued)

Material Derivative

Laws of physics – conservation of mass, conservation of energy, etc.

Express in reference frame of material, e.g. rod

Steady state:
$$
T = T_0 x / L
$$
; $\frac{\partial T}{\partial t} = 0$

Lagrangian frame:
$$
\rho c_p \frac{\partial T}{\partial t} = -k\nabla^2 T + A
$$

Eulerian frame – material is moving. There would be a $\frac{\partial T}{\partial x}$ ∂*t* for the above rod moving

through.

Marching band example.

Need to account for "non physical" change due to motion.

Above example:
$$
\frac{\partial T}{\partial t} = -v \frac{\partial T}{\partial x}
$$
 where $-v \frac{\partial T}{\partial x}$ is advection term.

Material derivative:

$$
\frac{D}{Dt} = \frac{\partial}{\partial t} + \underline{v} \cdot \nabla
$$

Heat conduction

$$
\frac{DT}{Dt} = \frac{\partial T}{\partial t} + \underline{v} \nabla T = -k \nabla^2 T + H
$$

Conservation of Mass – Continuity Equation

Consider motion in x_2 direction:

Figure 22.2 Figure by MIT OCW.

Sides: mass in - mass out =
$$
-\frac{\partial}{\partial x_2}(\rho v_2)dx_2dx_1dx_3 = -\frac{\partial}{\partial x_2}(\rho v_2)dV
$$

Front, back: mass in - mass out = $-\frac{\partial}{\partial x}$ ∂ x₁ $(\rho v_1) dV$

Top, bottom: mass in - mass out = $-\frac{\partial}{\partial x}$ ∂ x₃ $(\rho v_3) dV$

For all 3 directions:
$$
-\frac{\partial}{\partial x_1}(\rho v_1) - \frac{\partial}{\partial x_2}(\rho v_2) - \frac{\partial}{\partial x_3}(\rho v_3) = \frac{\partial \rho}{\partial t}
$$

$$
\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_1}(\rho v_i) = 0
$$

$$
\frac{\partial \rho}{\partial t} + v_i \frac{\partial \rho}{\partial x_1} + \rho \frac{\partial v_i}{\partial x_1} = 0
$$

$$
\frac{D\rho}{Dt} + \rho \frac{\partial v_i}{\partial x_1} = 0 \quad \text{(Law of conservation of mass)}
$$

For an incompressible fluid with constant properties

$$
-\nabla p + \mu \nabla^2 y + \rho x = \rho \frac{Dy}{Dt}
$$

or, with $v = \mu / \rho$ (dynamic viscosity)

$$
-\frac{1}{\rho}\frac{\partial p}{\partial x_i} + v \frac{\partial^2 v_i}{\partial x_j \partial x_j} + x_i = \frac{Dv_i}{Dt}
$$
 (Navier-Stokes equation)

"Plane strain"

 Figure 22.3 Figure by MIT OCW.

$$
t = 0
$$
, $y = 0$, $y(x_1 = 0) = (0, v_0, 0)$

only have $v_2 \neq 0$

$$
\infty
$$
 in x₂ direction $\Rightarrow \frac{\partial}{\partial x_2} = 0$

Subtract out hydrostatic

$$
\frac{\partial v_2}{\partial t} = v \frac{\partial^2 v_2}{\partial x_1^2}
$$

The solution becomes $v = v_0 (1 - erf \frac{x_1}{2})$ 2 ^ν*t*)

where $erf(y) = \frac{2}{\pi} \int_{0}^{\infty} e^{-\xi^2}$ $\mathbf{0}$ $\int e^{-\xi^2} d\xi$.

Velocity propagates downward a characteristic depth, $x_1 = 2\sqrt{vt}$.

Example: canoe 5 meters long,

$$
v_0 = 5 \text{ m/sec} \Rightarrow t : 1 \text{ sec}
$$

water $v : 10^{-2} \text{ cm}^2/\text{sec} \Rightarrow x_1 : 2\sqrt{10^{-2}} = 2 \text{ mm}$

A canoe will drag along about 2 mm water.