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12.510 Introduction to Seismology

Surface Waves (Ground Roll)

April 2, 2008

Today we will look at the interaction of an acoustic wave (ground roll)
with a layer over half space. We will consider travel time curves for acoustic
waves and describe them using higher modes of surface wave propagation.
We will also use a propagation matrix as a reflectivity method to calculate
synthetic seismograms.

Case 1: Layer over Source in a Half Space
Lets look at what happens when we have 2 interfaces. We are working with
acoustic waves, so we will take P = pressure field. Note that the methods
used here can be used for SH waves as well. The same principles can be
applied to P-SV waves, but the algebra becomes more complicated.
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Figure 1: Diagram of a source in a half space under a layer



The wave equation for the acoustic case is
. 1
P=kV. (;VP) (1)

with the displacement given by

_

u=
pw?

vP (2)

This case becomes a bit more complicated than the simple reflection
previously discussed. The analytical methods used to decribe the simple
reflection begin to break down when multiple layers are introduced.

We will renormalize the incoming wave to ]52 = 1 and define Pg = R.
Using the plane wave description,

P = Pei(kxm—kzz—wt) + Pei(kxﬂﬂ—kzz—wt)

Notice the positive and negative k,z terms to describe the vertical slow-
ness, as well as the different amplitudes P and P . We want to know what
is happening with respect to crossing the interface, so we will ignore the
x-direction, leaving the e?*:* terms and giving

P= pe—iuz + Pe—iuz
where the vertical wave number is given by

_ _ W __ wCost __
Vz—kz—g—ic =wn

P = Pe~% 4 Pe~% can be set up for each layer. We can solve for the
pressure by taking the gradient in the z-direction:

Uy = %—f = pTIQ(iZ/Pei”Z — ivPe?) = p%(]:’eiyz — Pei?)
To solve this system we will follow the steps:
1. Look at Potentials (Pressure Field)

2. Kinematic and Dynamic Boundary Conditions

3. Zoeppritz equations



4. Solve for R and T
At z=0, the welded interface, the stress is continuous so

Po+P,=1+R=P +P

The displacement at z = 0 is given by
u(0) = pfiTVz(Pl —P)

which implies that at the free surface:
D Py = 201(p P — Y2 (R _
Py =Py =20 (P — P1) = 2(R—1)
At the free surface z = —H
Pie=wH o peiiH — () where vy is the vertical wave number k, = Ci

The three equations above give the Zoeppritz matrix and we solve for R

1 1 ~1 P 1
—V1 141 —U2 ~

- 48 V2 P, — -1
ep—lilll H gillll H 0,02 R 0

R — (=m)+(4menn?
T )+ A-nert

_ pive
p2v1

where v

Some remarks on the reflection at the free surface:

- The reflection coefficient is a complex number. In the cases we studied in
previous lectures, R became complex when ¢ = i..

- |R| = 1, which means that the energy is not stored in the upper layer
but is eventually all — reflected back. E.g., if the input is a single spike,
the output is a series of reverberations (see homework 2, problem 3). This
occurs because of conservation of energy; if there is no source in the upper
layer, there can be no residual trapped energy in the upper layer. The en-
ergy is reflected from z =7H and both reflected and partially transmitted
from z = 0 until it fully dissipates back into the half space.

- There is a frequency?dependent phase shift 1 in the waveform, ie. R =
o207 gilkr—wt+L)

Case 2: Source Within a Layer Over a Half Space
The source within the layer is analagous to a source in a weathered layer,
e.g. an induced source in exploration seismology or surface waves in earth-
quake seismology. This scenario is similar to the Love waves case discussed
in previous lectures. In the case of angles such that i;ic (evanescent waves),



no energy will be transmitted into the half space.

Figure 2: Diagram of a source in a layer over a half space

To solve this system we will follow the steps as before:
1. Look at Potentials (Pressure Field)

2. Kinematic and Dynamic Boundary Conditions

3. Zoeppritz equations

4. Solve for R and T

Because stress must be continuous,

P:P1+P1:P2+P2:0+T:>p1+P1—T:0

The total displacement must be continuous at the interface, so
u= W%VP = ;—Z(Pewz + Pe™ %)
= Z—i(Pl - P) = Z—iT
= (P —P)=802T =0T

p2v1

D _ P, — — — P2 _ pia oz — i
.:> P - P —nT 0 where n PR Paca = and picy=acoustic
impedance.

At z=—-H,

Pl + eQiVall =0

Notice that the T in these equations is not the conventional T" as before
because it is evanescent. In contrast to previous cases, we can now form a
homogeneous set of Zoeppritz equations:

1 1 -1 P, 0
1 -1 = P|l=1]0
1 eXnn T 0



The solution of this system depends on the layer thickness (H ), the ver-
tical wave number (v), the direction of the rays (2<%!) and the impedence
contrast (1 = 2L). To obtain the nontrivial solution to this system, we must
set the determmant of the 3x3 term to zero, leading to

= ne

2i0 _ a=b S

! = o47p - giving
tanf = %b. Using this, we can rewrite our nontrivial solution as tan (v1 H) =
1 _ pan

in 1p1V2

We know that in the complex plane, generally, e~

_ 1 _ paa
= tan(vr1H) = o =2

where 1| = w, /(2 i —p?and vy = W1/(é)2 —p?.

The dispersion relationship for ground roll (which is the same as
the dispersion relationship for Love waves) is thus given by
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For a given frequency and layer thickness H, for certain directions given
by p = S’n“ = 3122’2 and known ¢, co, we can solve this system.

Given fixed w , ie. i1 = 90° solves the dispersion equation, ie. the direct
wave is a solution to the dispersion equation. See Figure 3.
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Figure 3: Diagram of (1) a direct wave and (2) a critical wave
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Figure 4: Graphical representation of the dispersion relationship for ground
roll.



For all postcritical angles i, or é <p< %, we have locked modes, where
all of the energy stays in the upper layer. The fundamental mode labeled at
% represents the p-value for a direct wave. The subsequent intersections of
the left side solutions and the right side solutions give progressively higher
modes (overtones) as p decreases to é For precritical angles i, or p < é,
energy is lost due to wave transmission into the half space, so we get leaky

modes.

Also, because the spacing between the asymptotes of the left side so-
lutions is dependent on w, for any given frequency, there is a finite set of
solutions (i.e. modes) to the dispersion relation. Each mode has a specific
horizontal slowness and take?off angle because the waves can only propagate
in a way that creates constructive interference.

As the frequency decreases and wavelength increases, the spacing be-
tween the left side solution curves increases, thus decreasing the number of
overtones. Similarly, as the frequency increases, the number of overtones
also increases. A plot of these overtones as frequency approaches infinity
will approach a continuous graph along the plot of the right side solution.
Another way to think about overtones is to visualize the direct wave on Fig-
ure 3 with a wavelength equal to the distance between the source and the
receiver. This is a high wavelength with a low frequency, and in this case
a plot of the dispersion relation would show that the left side solutions are
spaced so far apart that few, if any, overtones exist, i.e. given the partic-
ular long wavelength and H-value, there are few other incident angles that
will result in a coincidence between the path of the wave and the receiver
(constructive interference). As the frequency increases and wavelength de-
creases, there will be more incident angles such that the path of the wave
coincides with the receiver and results in constructive interference.

We begin RAY THEORY briefly...
As w — oo infinite continuous spectrum of solutions with phase velocity

w w
C = — kj = —
n ko 'm0 cn
J A— 1 __ cosip
n Cn

So we can simply use Snell’s Law. It holds now that there is no concept of
interference.





