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12.510 Introduction to Seismology 

Surface Waves (Ground Roll) 

April 2, 2008 

Today we will look at the interaction of an acoustic wave (ground roll) 
with a layer over half space. We will consider travel time curves for acoustic 
waves and describe them using higher modes of surface wave propagation. 
We will also use a propagation matrix as a reflectivity method to calculate 
synthetic seismograms. 

Case 1: Layer over Source in a Half Space 
Lets look at what happens when we have 2 interfaces. We are working with 
acoustic waves, so we will take P = pressure field. Note that the methods 
used here can be used for SH waves as well. The same principles can be 
applied to P-SV waves, but the algebra becomes more complicated. 

Figure 1: Diagram of a source in a half space under a layer
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The wave equation for the acoustic case is 

P ̈ = k� · (
ρ

1 �P ) (1) 

with the displacement given by 

1 
u = 

ρω2 �P (2) 

This case becomes a bit more complicated than the simple reflection 
previously discussed. The analytical methods used to decribe the simple 
reflection begin to break down when multiple layers are introduced. 

´ ` We will renormalize the incoming wave to P2 = 1 and define P2 = R. 
Using the plane wave description, 

´ ` P = Pei(kxx−kz z−ωt) + Pei(kxx−kz z−ωt) 

Notice the positive and negative kzz terms to describe the vertical slow­
´ ` ness, as well as the different amplitudes P and P . We want to know what 

is happening with respect to crossing the interface, so we will ignore the 
x-direction, leaving the eikz z terms and giving 

´ ` P = Pe−iνz + Pe−iνz 

where the vertical wave number is given by 

νz = kz = ω = ω cos i = ωη cz c 

´ ` P = Pe−iνz + Pe−iνz can be set up for each layer. We can solve for the 
pressure by taking the gradient in the z-direction: 

δP 1 Peiνz iν Peiνz Peiνz)Peiνz) = ( ` ´ uz = δz = 
ρω2 (iν ` − iν ´ 

ρω2 − 

To solve this system we will follow the steps: 

1. Look at Potentials (Pressure Field) 

2. Kinematic and Dynamic Boundary Conditions 

3. Zoeppritz equations 
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4. Solve for R and T 

At z=0, the welded interface, the stress is continuous so

´ ` ´ `
P2 + P2 = 1 + R = P1 + P1 

The displacement at z = 0 is given by 
iν u(0) = 

ρω2 (P̀  
1 − Ṕ  

1) 

which implies that at the free surface: 
P̀  

2 − Ṕ  
2 = ν2ρ1 (P̀  

1 − Ṕ  
1) = ν2 (R − 1)ν1ρ2 ρ2 

At the free surface z = −H 
Ṕ  

1e
−iν1H + P̀  

1e
iν1H = 0 where ν1 is the vertical wave number kz = c

ω 
z 
. 

⎤⎡The three equations above give the Zoeppritz matrix and we solve for R 
1 1 −1 

⎤ 

−ν2 

⎡
⎤
⎡ ⎢⎣ 

´
P1 1 ⎢⎣ 
⎥⎦ 

⎥⎦ ⎢⎣ 
⎥⎦ `
−ν1 ν1 

ρ1 
−1


0

P1 =
ρ1 ρ2 

e−iν1H eiν1H 0 R 
(1−η)+(1+η)e2iν1H 

R = 
(1+η)+(1−η)e2iν1H 

where ν = ρ1ν2 
ρ2ν1 

Some remarks on the reflection at the free surface: 
- The reflection coefficient is a complex number. In the cases we studied in 
previous lectures, R became complex when i = ic. 
- |R| = 1, which means that the energy is not stored in the upper layer 
but is eventually all — reflected back. E.g., if the input is a single spike, 
the output is a series of reverberations (see homework 2, problem 3). This 
occurs because of conservation of energy; if there is no source in the upper 
layer, there can be no residual trapped energy in the upper layer. The en­
ergy is reflected from z =?H and both reflected and partially transmitted 
from z = 0 until it fully dissipates back into the half space. 
- There is a frequency?dependent phase shift ω

γ in the waveform, ie. R = 
γ 

e2iγ e i(kx−ωt+ 
ω ). 

Case 2: Source Within a Layer Over a Half Space 
The source within the layer is analagous to a source in a weathered layer, 
e.g. an induced source in exploration seismology or surface waves in earth­
quake seismology. This scenario is similar to the Love waves case discussed 
in previous lectures. In the case of angles such that i¿ic (evanescent waves), 
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no energy will be transmitted into the half space.


Figure 2: Diagram of a source in a layer over a half space 

To solve this system we will follow the steps as before: 

1. Look at Potentials (Pressure Field) 

2. Kinematic and Dynamic Boundary Conditions 

3. Zoeppritz equations 

4. Solve for R and T 

Because stress must be continuous,

´ ` ´ ` ´ `
P = P1 + P1 = P2 + P2 = 0 + T ⇒ P1 + P1 − T = 0 

The total displacement must be continuous at the interface, so


ρω2 �P ρω (Pe` iνz + ´
u = 1 = iν Pe−iνz) 
ν1 ⇒ ρ1 

(P̀  
1 − Ṕ  

1) = ρ
ν2

2 
T 

⇒ (P̀  
1 − Ṕ  

1) = ρ
ρ
2

1

ν
ν
1

2 T = ηT 

⇒ P̀  
1 − Ṕ  

1 − ηT = 0 where η = ρ
ρ
2

1

ν
ν
1

2 = ρ
ρ
2

1

c
c
2

1 = z
z
2

1 and ρ1c1=acoustic 
impedance. 

At z = −H, 
P̀  

1 + e2iν1H Ṕ  
1 = 0 

Notice that the T in these equations is not the conventional T as before 
because it is evanescent. In contrast to previous cases, we can now form a 
homogeneous set of Zoeppritz equations: ⎡⎤⎡ ⎤⎡⎤

`
1 1 −1
 P1 0 ⎢⎣ 
⎢⎣ 

⎥⎦ 
⎥⎦ ⎢⎣ 

⎥⎦ ´
1 −1 
2iν1η 

0
−ζ 
0 T 0 

P1 =

1
 e
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The solution of this system depends on the layer thickness (H), the ver­
tical wave number (ν), the direction of the rays (ω cos i ), and the impedence c 
contrast (η = z

z
2

1 ). To obtain the nontrivial solution to this system, we must 
set the determinant of the 3x3 term to zero, leading to ⎡ ⎤ 

1 1 −1

det ⎣⎢ 1 −1 −η ⎦⎥ = 0


1 e2iν1H 0


⇒ ηe2iν1H − e2iν1H − η − 1 = 0 

⇒ (η − 1)e2iν1H = η + 1 

2iν1H η+1 e = ⇒ η−1 

We know that in the complex plane, generally, e−2iθ = a−b , giving a+b 

tan θ = −a
ib . Using this, we can rewrite our nontrivial solution as tan (ν1H) = 

1 = ρ2ν1 
iη iρ1ν2 

tan(ν1H) = 1 = ρ2ν1 ⇒ iη iρ1ν2 

where ν1 = ω ( c
1 
1 
)2 − p2 and ν2 = ω ( c

1 
2 
)2 − p2. 

The dispersion relationship for ground roll (which is the same as 
the dispersion relationship for Love waves) is thus given by 

tan 
� 
ωH 

� 
( c

1 
1 
)2 − p2 

� 
= 

ρ2 � 
( 

c
1

1 
)2−p2


ρ1 ( 1 )2−p2

c2


For a given frequency and layer thickness H, for certain directions given 
by p = sin 

c1 

i1 = sin 
c2 

i2 and known c1, c2, we can solve this system. 

Given fixed ω , ie. i1 = 90o solves the dispersion equation, ie. the direct 
wave is a solution to the dispersion equation. See Figure 3. 
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Figure 3: Diagram of (1) a direct wave and (2) a critical wave


Figure 4: Graphical representation of the dispersion relationship for ground 
roll. 
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For all postcritical angles i, or c
1 
2 

< p < c
1 
1 
, we have locked modes, where 

all of the energy stays in the upper layer. The fundamental mode labeled at 
1 represents the p-value for a direct wave. The subsequent intersections of c1 

the left side solutions and the right side solutions give progressively higher 
modes (overtones) as p decreases to c

1 
2 
. For precritical angles i, or p < c

1 
2 
, 

energy is lost due to wave transmission into the half space, so we get leaky 
modes. 

Also, because the spacing between the asymptotes of the left side so­
lutions is dependent on ω, for any given frequency, there is a finite set of 
solutions (i.e. modes) to the dispersion relation. Each mode has a specific 
horizontal slowness and take?off angle because the waves can only propagate 
in a way that creates constructive interference. 

As the frequency decreases and wavelength increases, the spacing be­
tween the left side solution curves increases, thus decreasing the number of 
overtones. Similarly, as the frequency increases, the number of overtones 
also increases. A plot of these overtones as frequency approaches infinity 
will approach a continuous graph along the plot of the right side solution. 
Another way to think about overtones is to visualize the direct wave on Fig­
ure 3 with a wavelength equal to the distance between the source and the 
receiver. This is a high wavelength with a low frequency, and in this case 
a plot of the dispersion relation would show that the left side solutions are 
spaced so far apart that few, if any, overtones exist, i.e. given the partic­
ular long wavelength and H-value, there are few other incident angles that 
will result in a coincidence between the path of the wave and the receiver 
(constructive interference). As the frequency increases and wavelength de­
creases, there will be more incident angles such that the path of the wave 
coincides with the receiver and results in constructive interference. 

We begin RAY THEORY briefly... 
As ω → ∞ infinite continuous spectrum of solutions with phase velocity 
cn = k

ω 
n 
, kn = c

ω 
n 

kn c
1 
n 

cos 
c
in= = 

So we can simply use Snell’s Law. It holds now that there is no concept of 
interference. 
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