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Summary of last class
• Basic Statistics

– Statistical description and parameters
• Probability distributions
• Descriptions: expectations, variances, moments
• Covariances
• Estimates of statistical parameters  

• Propagation of variances
– Methods for determining the statistical parameters 

of quantities derived other statistical variables
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Today’s class
• Estimation methods

– Restrict to basically linear estimation problems (also 
non-linear problems that are nearly linear)

– Restrict to parametric, over determined estimation 
– Concepts in estimation:

• Mathematical models
• Statistical models
• Least squares and Maximum likelihood estimation
• Covariance matrix of estimates parameters
• Covariance matrix of post-fit residual
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Concepts in estimation
• Given multiple observations of a quantity or related to a set of

quantities how do you obtain a “best” estimate.
• What do we mean by “best”
• How do you quantify of quality of observations and the 

relationship between errors in observations.
• The complete answers to the above questions are complex 
• We will limit our discussion to parametric estimation mostly for

Gaussian distributed random errors in measurements.
• In parametric estimation, mathematical relationships between 

observations and parameters that can be used to model the 
observations is used (e.g., GPS measures pseudoranges to 
satellites: These observations can be related to the positions of 
the ground station and satellites plus other parameters that we 
discuss later).
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Basics of parametric estimation
• All parametric estimation methods can be broken into 

a few main steps:
– Observation equations: equations that relate the 

parameters to be estimated to the observed 
quantities (observables).  Mathematical model.

• Example: Relationship between pseudorange, receiver 
position, satellite position (implicit in ρ), clocks, 
atmospheric and ionosphere delays

– Stochastic model: Statistical description that 
describes the random fluctuations in the 
measurements and maybe the parameters.  In 
some forms the stochastic model is not explicit.

– Inversion that determines the parameters values 
from the mathematical model consistent with the 
statistical model.
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Observation model
• Observation model are equations relating observables 

to parameters of model:
– Observable = function (parameters)
– Observables should not appear on right-hand-side 

of equation
– The observed values are the observable plus noise 

of some stochastic nature
• Often function is non-linear and most common method 

is linearization of function using Taylor series 
expansion.

• Sometimes log linearization for f=a.b.c ie. Products fo 
parameters
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Taylor series expansion
• In most common Taylor series approach:

• The estimation is made using the difference between 
the observations and the expected values based on 
apriori values for the parameters.

• The estimation returns adjustments to apriori 
parameter values

• The observations are y+noise

y = f (x1,x2,x3,x4 )

y0 + Δy = f (x) x 0
+

∂f (x)
∂x

Δx x = (x1,x2,x3,x4 )
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Linearization
• Since the linearization is only an approximation, the 

estimation should be iterated until the adjustments to 
the parameter values are zero.

• For GPS estimation: Convergence rate is 100-1000:1 
typically (ie., a 1 meter error in apriori coordinates 
could results in 1-10 mm of non-linearity error).

• To assess, the level on non-linear contribution, the 
Taylor series expansion is compared to the non-linear 
evaluation.  If the differences are similar in size to the 
noise in the measurements, then a new Taylor series 
expansion, about the better estimates of the 
parameters, is needed.
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Estimation
• Most common estimation method is “least-squares” in 

which the parameter estimates are the values that 
minimize the sum of the squares of the differences 
between the observations and modeled values based 
on parameter estimates.

• For linear estimation problems, direct matrix 
formulation for solution

• For non-linear problems: Linearization or search 
technique where parameter space is searched for 
minimum value

• Care with search methods that local minimum is not 
found (will not treat in this course)
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Least squares estimation
• Originally formulated by Gauss.
• Basic equations: Δy is vector of observations; A is 

linear matrix relating parameters to observables; Δx is 
vector of parameters; v is residual

Δy = AΔx + v

minimize vT v( ); superscript T means transpose

Δx = (ATA)−1ATΔy
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Weighted Least Squares
• In standard least squares, nothing is assumed about 

the residuals v except that they are zero expectation.  
• One often sees weight-least-squares in which a 

weight matrix is assigned to the residuals.  Residuals 
with larger elements in W are given more weight.

minimize vT Wv( ); 
Δx = (AT WA)−1AT WΔy
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Statistical approach to least squares
• If the weight matrix used in weighted least squares is the inverse 

of the covariance matrix of the residuals, then weighted least 
squares is a maximum likelihood estimator for Gaussian 
distributed random errors.

• This choice maximizes the probability density (called a maximum 
likelihood estimate, MLE)

• This latter form of least-squares is most statistically rigorous 
version.

• Sometimes weights are chosen empirically

 f (v) =
1

(2π )n V
e

−
1
2

vT V−1v
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Data covariance matrix
• If we use the inverse of the covariance matrix of the noise in the data, 

we obtain a MLE if data noise is Gaussian distribution.
• How do you obtain data covariance matrix?
• Difficult question to answer completely
• For sextant measurements:

– Index error measurements
– Individual observers

• Issues to be considered for GPS specifically:
– Thermal noise in receiver gives on component
– Multipath could be treated as a noise-like quantity
– Signal-to-noise ratio of measurements allows an estimate of the 

noise (discussed later in course).
– In-complete mathematical model of observables can sometimes be 

treated as noise-like.
– Gain of GPS antenna will generate lower SNR at low elevation 

angles



11/01/2006 12.215 Modern Naviation L13 14

Data covariance matrix
• In practice in GPS (as well as many other fields), the data 

covariance matrix is somewhat arbitrarily chosen. 
• Largest problem is temporal correlations in the measurements.  

Typical GPS data set size for 24-hours of data at 30 second 
sampling is 8x2880=23000 phase measurements.  Since the 
inverse of the covariance matrix is required, fully accounting for 
correlations requires the inverse of 23000x23000 matrix.

• To store the matrix would require, 4Gbytes of memory
• Even if original covariance matrix is banded (ie., correlations over 

a time short compared to 24-hours), the inverse of banded matrix 
is usually a full matrix (However, remember LU decomposition in 
linear algebra lecture)
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ˆ x = (A T Vyy
−1A)−1 A T Vyy

−1y

< ˆ x ̂  x T >= (A T Vyy
−1A)−1 A T Vyy

−1 < yyT > Vyy
−1A(A T Vyy

−1A)−1

Vˆ x ̂  x = (A T Vyy
−1A)−1

• Propagation of covariance can be applied to the weighted least 
squares problem:

• Notice that the covariance matrix of parameter estimates is a 
natural output of the estimator if ATV-1A is inverted (does not 
need to be)

Covariance matrix of parameter 
estimates
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Covariance matrix of estimated 
parameters

• Notice that for the rigorous estimation, the inverse of the data
covariance is needed (time consuming if non-diagonal)

• To compute to parameter estimate covariance, only the 
covariance matrix of the data is needed (not the inverse)

• In some cases, a non-rigorous inverse can be done with say a 
diagonal covariance matrix, but the parameter covariance matrix 
is rigorously computed using the full covariance matrix.  This is a 
non-MLE but the covariance matrix of the parameters should be 
correct (just not the best estimates that can found).

• This techniques could be used if storage of the full covariance 
matrix is possible, but inversion of the matrix is not because it 
would take too long or inverse can not be performed in place.
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Covariance matrix of post-fit 
residuals

• Post-fit residuals are the differences between the 
observations and the values computed from the 
estimated parameters

• Because some of the noise in the data are absorbed 
into the parameter estimates, in general, the post-fit 
residuals are not the same as the errors in the data.

• In some cases, they can be considerably smaller.
• The covariance matrix of the post-fit residuals can be 

computed using propagation of covariances.
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Covariance matrix of post-fit 
residuals

• This can be computed using propagation on 
covariances: e is the vector of true errors, and v is 
vector of residuals

  

y = Ax + e
ˆ x = (A T Vyy

−1A)−1A T Vyy
−1y

v = y − Aˆ x = I − A(A T Vyy
−1A)−1A T Vyy

−1

Amount error reduced
1 2 4 4 4 3 4 4 4 

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
e    Eqn 1

Vvv =< vvT >= Vyy − A(A T Vyy
−1A)−1A T



11/01/2006 12.215 Modern Naviation L13 19

Post-fit residuals
• Notice that we can compute the compute the 

covariance matrix of the post-fit residuals (a large 
matrix in generate)

• Eqn 1 on previous slide gives an equation of the form 
v=Be; why can we not compute the actual errors with 
e=B-1v?

• B is a singular matrix which has no unique inverse 
(there is in fact one inverse which would generate the 
true errors)

• Note: In this case, singularity does not mean that 
there is no inverse, it means there are an infinite 
number of inverses.
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Example
• Consider the case shown below: When a rate of 

change is estimated, the slope estimate will absorb 
error in the last data point particularly as Δt increases. 
(Try this case yourself)
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Postfit error bar very small; 
slope will always pass close 

to this data pointPostfit error bar 
somewhat reduced

Example of fitting slope to non-uniform data distribution
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Summary
• Estimation methods

– Restrict to basically linear estimation problems (also 
non-linear problems that are nearly linear)

– Restrict to parametric, over determined estimation 
– Concepts in estimation:

• Mathematical models
• Statistical models
• Least squares and Maximum likelihood estimation
• Covariance matrix of estimated parameters
• Statistical properties of post-fit residuals
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